Metal nitride species are recognized as key intermediates in the conversion of dinitrogen (N2) to ammonia (NH3). In this work, we report the isolation of a multimetallic nitride-bridged thorium complex (2) by completely cleaving the N≡N triple bond of N2. The complex was synthesized through the reduction of a thorium precursor, {N[CH2CH2N-PiPr2]3ThCl}2 (1) and chromium dichloride (CrCl2) using potassium graphite (KC8) under an N2 atmosphere. Isotopic labeling with 15N2 confirms that the nitride in complex 2 originates from N2. Under ambient conditions, complex 2 exhibits remarkable catalytic activity, converting N2 to silylamine with yields of up to 9.9 equiv per thorium molecular catalyst. This work not only represents the first isolation of a thorium nitride complex from N2 reduction but also provides a rare example of N2 functionalization promoted by an actinide catalyst.