Towards Generalizable In Silico Predictions of Differential Ion Mobility Using Machine Learning and Customized Fingerprint Engineering

化学 指纹(计算) 生物信息学 差速器(机械装置) 人工智能 机器学习 航空航天工程 生物化学 计算机科学 工程类 基因
作者
Cailum M. K. Stienstra,Christopher R. M. Ryan,Daniel Demczuk,Justine R. Bissonnette,Anish Arjuna,J. Larry Campbell,W. Scott Hopkins
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c00737
摘要

Differential mobility spectrometry (DMS), a tool for separating chemically similar species (including isomers), is readily coupled to mass spectrometry to improve selectivity in analytical workflows. DMS dispersion curves, which describe the dynamic mobility experienced by an ion in a gaseous environment, show the maximum ion transmission for an analyte through the DMS instrument as a function of the separation voltage (SV) and compensation voltage (CV) conditions. To date, there exists no fast, general prediction tool for the dispersion behavior of ions. Here, we demonstrate a machine learning (ML) model that achieves generalized dispersion prediction using an in silico feature addition pipeline. We employ a data set containing 1141 dispersion curve measurements of anions and cations recorded in pure N2 environments and in N2 environments doped with 1.5% methanol (MeOH). Our feature addition pipeline can compute 1591 RDKit and Mordred descriptors using only SMILES codes, which are then normalized to sampled molecular distributions (n = 100 000) using cumulative density functions (CDFs). This tool can be thought of as a "learned" feature fingerprint generation pipeline, which could be applied to almost any molecular (bio)cheminformatics tasks. Our best performing model, which for the first time considers solvent-modified environments, has a mean absolute error (MAE) of 2.1 ± 0.2 V for dispersion curve prediction, a significant improvement over the previous state-of-the-art work. We use explainability techniques (e.g., SHAP analysis) to show that this feature addition pipeline is a semideterministic process for feature sets, and we discuss "best practices" to understand feature sets and maximize model performance. We expect that this tool could be used for prescreening to accelerate or even automate the use of DMS in complex analytical workflows (e.g., 2D LC×DMS separation) and perform automated identification of transmission windows and increase the "self-driving" potential of the instrument. We make our models available as a free and accessible tool at https://github.com/HopkinsLaboratory/DispersionCurveGUI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
充电宝应助老阳采纳,获得10
2秒前
小子完成签到,获得积分20
2秒前
迷路荧发布了新的文献求助10
4秒前
荣安安完成签到,获得积分10
6秒前
7秒前
8秒前
上官若男应助hxx采纳,获得10
8秒前
10秒前
10秒前
小趴菜发布了新的文献求助10
13秒前
橘子发布了新的文献求助10
14秒前
uwu发布了新的文献求助10
15秒前
16秒前
老阳发布了新的文献求助10
16秒前
范断秋完成签到 ,获得积分10
16秒前
17秒前
FashionBoy应助1762120采纳,获得10
20秒前
20秒前
小巧寻桃完成签到 ,获得积分20
21秒前
张半首发布了新的文献求助10
21秒前
uwu完成签到,获得积分10
24秒前
27秒前
匹诺曹发布了新的文献求助10
27秒前
科研通AI5应助橘子采纳,获得10
28秒前
28秒前
29秒前
爆米花应助吴陈采纳,获得10
29秒前
JavedAli完成签到,获得积分10
30秒前
传奇3应助qsj采纳,获得10
31秒前
xuan完成签到,获得积分10
32秒前
余雨梅完成签到,获得积分10
32秒前
32秒前
舒心猕猴桃完成签到,获得积分10
33秒前
小白发布了新的文献求助10
35秒前
爆米花应助lsy采纳,获得10
35秒前
张半首完成签到,获得积分10
36秒前
惜曦完成签到 ,获得积分10
37秒前
SciGPT应助老阳采纳,获得10
37秒前
耶耶发布了新的文献求助20
38秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738651
求助须知:如何正确求助?哪些是违规求助? 3282034
关于积分的说明 10027372
捐赠科研通 2998753
什么是DOI,文献DOI怎么找? 1645559
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749975