Boosting quantification accuracy of chemical exchange saturation transfer MRI with a spatial–spectral redundancy‐based denoising method

计算机科学 子空间拓扑 稳健性(进化) 降噪 模式识别(心理学) 算法 高光谱成像 人工智能 冗余(工程) 生物系统 化学 生物化学 基因 操作系统 生物
作者
Xinran Chen,Jian Wu,Yu Yang,Huan Chen,Yang Zhou,Liangjie Lin,Zhiliang Wei,Jiadi Xu,Zhong Chen,Lin Chen
出处
期刊:NMR in Biomedicine [Wiley]
卷期号:37 (1) 被引量:7
标识
DOI:10.1002/nbm.5027
摘要

Abstract Chemical exchange saturation transfer (CEST) is a versatile technique that enables noninvasive detections of endogenous metabolites present in low concentrations in living tissue. However, CEST imaging suffers from an inherently low signal‐to‐noise ratio (SNR) due to the decreased water signal caused by the transfer of saturated spins. This limitation challenges the accuracy and reliability of quantification in CEST imaging. In this study, a novel spatial–spectral denoising method, called BOOST (suBspace denoising with nOnlocal lOw‐rank constraint and Spectral local‐smooThness regularization), was proposed to enhance the SNR of CEST images and boost quantification accuracy. More precisely, our method initially decomposes the noisy CEST images into a low‐dimensional subspace by leveraging the global spectral low‐rank prior. Subsequently, a spatial nonlocal self‐similarity prior is applied to the subspace‐based images. Simultaneously, the spectral local‐smoothness property of Z ‐spectra is incorporated by imposing a weighted spectral total variation constraint. The efficiency and robustness of BOOST were validated in various scenarios, including numerical simulations and preclinical and clinical conditions, spanning magnetic field strengths from 3.0 to 11.7 T. The results demonstrated that BOOST outperforms state‐of‐the‐art algorithms in terms of noise elimination. As a cost‐effective and widely available post‐processing method, BOOST can be easily integrated into existing CEST protocols, consequently promoting accuracy and reliability in detecting subtle CEST effects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐风年发布了新的文献求助10
刚刚
刚刚
古月发布了新的文献求助10
1秒前
12完成签到,获得积分10
2秒前
Lucas应助大桶水果茶采纳,获得10
2秒前
2秒前
3秒前
路瑶瑶发布了新的文献求助20
4秒前
是述不是沭完成签到,获得积分10
4秒前
4秒前
麻麻麻麻辣兔头完成签到,获得积分10
4秒前
4秒前
姜糖完成签到,获得积分10
4秒前
舒心的访冬给舒心的访冬的求助进行了留言
5秒前
5秒前
小丫发布了新的文献求助10
5秒前
负责乐安发布了新的文献求助10
5秒前
大模型应助lvxsit采纳,获得10
6秒前
蒋谷兰完成签到,获得积分10
6秒前
6秒前
桐桐应助古月采纳,获得10
7秒前
CC发布了新的文献求助10
7秒前
科目三应助blingbling采纳,获得10
7秒前
8秒前
8秒前
8秒前
徐风年完成签到,获得积分10
8秒前
9秒前
潘多拉完成签到,获得积分10
9秒前
七个丸子发布了新的文献求助30
9秒前
慕青应助冯成风采纳,获得30
10秒前
10秒前
朱小燕发布了新的文献求助10
10秒前
MsFelinus发布了新的文献求助30
11秒前
小蛋糕完成签到 ,获得积分10
12秒前
四叶草发布了新的文献求助10
12秒前
YifanWang应助aaa福采纳,获得30
12秒前
专一的万怨完成签到,获得积分20
12秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501168
关于积分的说明 11102048
捐赠科研通 3231509
什么是DOI,文献DOI怎么找? 1786448
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798