Integrated Transcriptomics–Proteomics Analysis Identifies Molecular Phenotypic Alterations Associated with Colorectal Cancer

蛋白质组学 转录组 生物 计算生物学 表型 基因 结直肠癌 癌变 生物标志物发现 生物信息学 遗传学 癌症 基因表达
作者
Jingjing Liu,Xinghua Jin,Chengchao Qiu,Ping Han,Yixuan Wang,Jian Zhao,Jing Wu,Neng Yan,Xiaofeng Song
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:23 (1): 175-184 被引量:1
标识
DOI:10.1021/acs.jproteome.3c00526
摘要

Understanding the pathogenesis and finding diagnostic markers for colorectal cancer (CRC) are the key to its diagnosis and treatment. Integrated transcriptomics and proteomics analysis can be used to characterize alterations of molecular phenotypes and reveal the hidden pathogenesis of CRC. This study employed a novel strategy integrating transcriptomics and proteomics to identify pathological molecular pathways and diagnostic biomarkers of CRC. First, differentially expressed proteins and coexpressed genes generated from weighted gene coexpression network analysis (WGCNA) were intersected to obtain key genes of the CRC phenotype. In total, 63 key genes were identified, and pathway enrichment analysis showed that the process of coagulation and peptidase regulator activity could both play important roles in the development of CRC. Second, protein–protein interaction analysis was then conducted on these key genes to find the central genes involved in the metabolic pathways underpinning CRC. Finally, Itih3 and Lrg1 were further screened out as diagnostic biomarkers of CRC by applying statistical analysis on central genes combining transcriptomics and proteomics data. The deep involvement of central genes in tumorigenesis demonstrates the accuracy and reliability of this novel transcriptomics–proteomics integration strategy in biomarker discovery. The identified candidate biomarkers and enriched metabolic pathways provide insights for CRC diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霸气谷蕊完成签到 ,获得积分10
2秒前
羊羊羊完成签到,获得积分10
2秒前
2秒前
3秒前
科研通AI5应助WNL采纳,获得10
3秒前
Xuu完成签到,获得积分10
3秒前
外向的沅发布了新的文献求助10
3秒前
徐慕源发布了新的文献求助10
3秒前
夏哈哈完成签到 ,获得积分10
4秒前
默默海露完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
迷路安阳发布了新的文献求助10
6秒前
6秒前
NexusExplorer应助Jolene66采纳,获得10
6秒前
医路有你完成签到,获得积分10
6秒前
7秒前
科研通AI5应助Sean采纳,获得10
7秒前
7秒前
超帅连虎完成签到,获得积分10
7秒前
皓月千里发布了新的文献求助10
7秒前
Grayball应助包容的剑采纳,获得10
7秒前
深情安青应助寒冷书竹采纳,获得10
8秒前
wbj0722完成签到,获得积分10
8秒前
JIAO完成签到,获得积分10
8秒前
8秒前
9秒前
852应助HopeStar采纳,获得10
9秒前
圆圆发布了新的文献求助30
10秒前
Orange应助Promise采纳,获得10
10秒前
一直发布了新的文献求助20
10秒前
10秒前
11秒前
乐乐应助JonyiCheng采纳,获得10
11秒前
无聊先知发布了新的文献求助10
11秒前
医路有你发布了新的文献求助10
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678