Artificial Intelligence Applications to Measure Food and Nutrient Intakes: A Scoping Review (Preprint)

预印本 计算机科学 人工智能 召回 系统回顾 科学网 精确性和召回率 科克伦图书馆 数据科学 情报检索 梅德林 万维网 心理学 政治学 认知心理学 法学
作者
Jiakun Zheng,Junjie Wang,Jing Shen,Ruopeng An
标识
DOI:10.2196/preprints.54557
摘要

BACKGROUND Accurate measurement of food and nutrient intake is crucial for nutrition research, dietary surveillance, and disease management, but traditional methods such as 24-hour dietary recalls, food diaries, and food frequency questionnaires are often prone to recall error and social desirability bias, limiting their reliability. With the advancement of artificial intelligence (AI), there is potential to overcome these limitations through automated, objective, and scalable dietary assessment techniques. However, the effectiveness and challenges of AI applications in this domain remain inadequately explored. OBJECTIVE This study aimed to conduct a scoping review to synthesize existing literature on the efficacy, accuracy, and challenges of using AI tools in assessing food and nutrient intakes, offering insights into their current advantages and areas of improvement. METHODS This review followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) guidelines. A comprehensive literature search was conducted in 4 databases—PubMed, Web of Science, Cochrane Library, and EBSCO—covering publications from the databases’ inception to June 30, 2023. Studies were included if they used modern AI approaches to assess food and nutrient intakes in human subjects. RESULTS The 25 included studies, published between 2010 and 2023, involved sample sizes ranging from 10 to 38,415 participants. These studies used a variety of input data types, including food images (n=10), sound and jaw motion data from wearable devices (n=9), and text data (n=4), with 2 studies combining multiple input types. AI models applied included deep learning (eg, convolutional neural networks), machine learning (eg, support vector machines), and hybrid approaches. Applications were categorized into dietary intake assessment, food detection, nutrient estimation, and food intake prediction. Food detection accuracies ranged from 74% to 99.85%, and nutrient estimation errors varied between 10% and 15%. For instance, the RGB-D (Red, Green, Blue-Depth) fusion network achieved a mean absolute error of 15% in calorie estimation, and a sound-based classification model reached up to 94% accuracy in detecting food intake based on jaw motion and chewing patterns. In addition, AI-based systems provided real-time monitoring capabilities, improving the precision of dietary assessments and demonstrating the potential to reduce recall bias typically associated with traditional self-report methods. CONCLUSIONS While AI demonstrated significant advantages in improving accuracy, reducing labor, and enabling real-time monitoring, challenges remain in adapting to diverse food types, ensuring algorithmic fairness, and addressing data privacy concerns. The findings suggest that AI has transformative potential for dietary assessment at both individual and population levels, supporting precision nutrition and chronic disease management. Future research should focus on enhancing the robustness of AI models across diverse dietary contexts and integrating biological sensors for a holistic dietary assessment approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ccj完成签到,获得积分10
1秒前
sijia完成签到,获得积分10
1秒前
1秒前
咩咩发布了新的文献求助10
1秒前
1秒前
Zheyan发布了新的文献求助10
1秒前
2秒前
2秒前
杳鸢应助Nini1203采纳,获得10
3秒前
ltt发布了新的文献求助10
3秒前
欢喜的毛巾完成签到,获得积分10
4秒前
所所应助Velvet采纳,获得10
4秒前
Hello应助过江春雷采纳,获得10
4秒前
4秒前
彩色的冷梅完成签到 ,获得积分10
4秒前
科研通AI2S应助Plasmacas采纳,获得10
5秒前
zb发布了新的文献求助30
5秒前
kyut发布了新的文献求助10
5秒前
袁心同发布了新的文献求助10
6秒前
含章发布了新的文献求助10
6秒前
7秒前
伶俐初兰发布了新的文献求助10
7秒前
852应助123采纳,获得10
8秒前
Spring发布了新的文献求助10
9秒前
9秒前
Ava应助JiaY采纳,获得10
10秒前
10秒前
10秒前
Jiny发布了新的文献求助10
13秒前
伶俐初兰完成签到,获得积分20
14秒前
吉吉完成签到,获得积分10
14秒前
14秒前
circet完成签到,获得积分10
15秒前
15秒前
那西西发布了新的文献求助20
15秒前
16秒前
丘比特应助小稻草人采纳,获得10
17秒前
yxl要顺利毕业_发6篇C完成签到,获得积分10
18秒前
花花完成签到,获得积分10
18秒前
18秒前
高分求助中
Востребованный временем 2500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
The Three Stars Each: The Astrolabes and Related Texts 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3386976
求助须知:如何正确求助?哪些是违规求助? 2999956
关于积分的说明 8787977
捐赠科研通 2685712
什么是DOI,文献DOI怎么找? 1471190
科研通“疑难数据库(出版商)”最低求助积分说明 680182
邀请新用户注册赠送积分活动 672800