热稳定性
化学
聚合
纳米颗粒
聚合物
高分子化学
共聚物
核化学
化学工程
有机化学
工程类
作者
Pingde Liu,Song Zhang,Falin Wei,Jing Lv,Pan Xu
摘要
Abstract To improve the stability of polymer gel profile control agents used in high‐temperature and high‐salinity reservoirs, the temperature‐resistant and salinity‐resistant polymer (TSP) was synthesized from acrylamide (AM), 2‐acrylamido‐2‐methylpropane sulfonic acid (AMPS), N‐vinyl‐2‐pyrrolidone (NVP) via free radical polymerization reaction using initiator. The TSP showed excellent salt resistance and thermal stability because of the introduction of the sulfonic acid group, hydrophobic group, and rigid group. Furthermore, a novel elevated temperature hydrogel (ETG) for profile control was prepared using TSP, a crosslinker hexamethylenetetramine‐hydroquinone (HMTA‐HQE), and silica nanoparticles as an enhancer. The formula of ETG was as follows: 0.5 wt% TSP + 0.3 wt% HMTA‐HQE + 0.2 wt% silica nanoparticles (enhancer). SEM and FTIR analyzed the micromorphology and composition of ETG. Under high temperature and salinity (110°C, 85702 mg/L), the apparent viscosity of ETG reached up to 3 × 10 4 mPa·s, and controllable gelation time was 10–20 h. After aging for 120 days at 110°C, the viscosity retention rate was more than 75%, indicating ETG had better thermal stability. Moreover, the plugging ratio of ETG reached up to 97.8%, while the plugging ratio of the conventional HPAM hydrogel was only 81.2%, which indicated that ETG also had good plugging performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI