Deep learning classification of systemic sclerosis from multi-site photoplethysmography signals

光容积图 线性判别分析 人工智能 模式识别(心理学) 卷积神经网络 医学 计算机科学 计算机视觉 滤波器(信号处理)
作者
Sadaf Iqbal,Jaume Bacardit,Bridget Griffiths,John Allen
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fphys.2023.1242807
摘要

Introduction: A pilot study assessing a novel approach to identify patients with Systemic Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG) waveforms ("DL-PPG"). Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and 20 SSc patients. RGB scalogram images were obtained from the PPG, using the continuous wavelet transform (CWT). 2 different pre-trained convolutional neural networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify the SSc and Control groups, evaluating their performance using 10-fold stratified cross validation (CV). Their classification performance (i.e., accuracy, sensitivity, and specificity, with 95% confidence intervals) was also compared to traditional machine learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN). Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for GoogLeNet were 83.1 (72.3-90.9), 75.0 (50.9-91.3) and 86.3 (73.7-94.3)% respectively, and for EfficientNetB0 were 87.3 (77.2-94.0), 80.0 (56.3-94.3) and 90.1 (78.6-96.7)%. The corresponding results for ML classification using LDA were 66.2 (53.9-77.0), 65.0 (40.8-84.6) and 66.7 (52.1-79.2)% respectively, and for KNN were 76.1 (64.5-85.4), 40.0 (19.1-63.9), and 90.2 (78.6-96.7)% respectively. Discussion: This study shows the potential of DL-PPG classification using CNNs to detect SSc. EfficientNetB0 gave an overall improved performance compared to GoogLeNet, with both CNNs performing better than the traditional ML methods tested. Our automatic AI approach, using transfer learning, could offer significant benefits for SSc diagnostics in a variety of clinical settings where low-cost portable and easy-to-use diagnostics can be beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
buno应助yuefeng采纳,获得10
1秒前
yiming完成签到,获得积分10
1秒前
落落发布了新的文献求助10
2秒前
清秋若月完成签到 ,获得积分10
2秒前
2秒前
呵呵呵呵完成签到,获得积分10
3秒前
3秒前
远方发布了新的文献求助10
4秒前
zxc111关注了科研通微信公众号
4秒前
5秒前
nanhe698发布了新的文献求助10
5秒前
Huang完成签到,获得积分10
5秒前
碳土不凡完成签到 ,获得积分10
6秒前
6秒前
淡淡采白发布了新的文献求助10
7秒前
7秒前
8秒前
Akim应助dingdong采纳,获得10
8秒前
8秒前
8秒前
satchzhao发布了新的文献求助10
8秒前
可爱的函函应助尺素寸心采纳,获得10
8秒前
66发布了新的文献求助10
9秒前
一鸣完成签到,获得积分10
9秒前
9秒前
ding应助呵呵呵呵采纳,获得10
9秒前
9秒前
汉堡包应助hkxfg采纳,获得10
11秒前
12秒前
sw完成签到,获得积分10
12秒前
没有神的过往完成签到,获得积分10
13秒前
13秒前
14秒前
15秒前
15秒前
芋圆不圆完成签到,获得积分10
16秒前
招财不肥发布了新的文献求助10
17秒前
zxc111发布了新的文献求助10
17秒前
魔幻的从梦完成签到,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808