Deep learning classification of systemic sclerosis from multi-site photoplethysmography signals

光容积图 线性判别分析 人工智能 模式识别(心理学) 卷积神经网络 医学 计算机科学 计算机视觉 滤波器(信号处理)
作者
Sadaf Iqbal,Jaume Bacardit,Bridget Griffiths,John Allen
出处
期刊:Frontiers in Physiology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fphys.2023.1242807
摘要

Introduction: A pilot study assessing a novel approach to identify patients with Systemic Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG) waveforms ("DL-PPG"). Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and 20 SSc patients. RGB scalogram images were obtained from the PPG, using the continuous wavelet transform (CWT). 2 different pre-trained convolutional neural networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify the SSc and Control groups, evaluating their performance using 10-fold stratified cross validation (CV). Their classification performance (i.e., accuracy, sensitivity, and specificity, with 95% confidence intervals) was also compared to traditional machine learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN). Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for GoogLeNet were 83.1 (72.3-90.9), 75.0 (50.9-91.3) and 86.3 (73.7-94.3)% respectively, and for EfficientNetB0 were 87.3 (77.2-94.0), 80.0 (56.3-94.3) and 90.1 (78.6-96.7)%. The corresponding results for ML classification using LDA were 66.2 (53.9-77.0), 65.0 (40.8-84.6) and 66.7 (52.1-79.2)% respectively, and for KNN were 76.1 (64.5-85.4), 40.0 (19.1-63.9), and 90.2 (78.6-96.7)% respectively. Discussion: This study shows the potential of DL-PPG classification using CNNs to detect SSc. EfficientNetB0 gave an overall improved performance compared to GoogLeNet, with both CNNs performing better than the traditional ML methods tested. Our automatic AI approach, using transfer learning, could offer significant benefits for SSc diagnostics in a variety of clinical settings where low-cost portable and easy-to-use diagnostics can be beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
潇洒飞丹发布了新的文献求助10
1秒前
TTw发布了新的文献求助10
2秒前
2秒前
石石刘完成签到 ,获得积分10
3秒前
岗岗发布了新的文献求助10
3秒前
steve发布了新的文献求助10
5秒前
5秒前
上官若男应助TTw采纳,获得10
6秒前
睡觉觉完成签到,获得积分20
6秒前
Alex关注了科研通微信公众号
7秒前
乐观小之应助黄的宝采纳,获得10
7秒前
8秒前
fzzf发布了新的文献求助10
8秒前
赘婿应助ents采纳,获得10
9秒前
王大D发布了新的文献求助10
10秒前
传奇3应助司空豁采纳,获得10
10秒前
10秒前
TT发布了新的文献求助30
11秒前
Shiku完成签到,获得积分10
12秒前
搞怪从菡完成签到,获得积分10
12秒前
求助发布了新的文献求助10
13秒前
酷酷以松发布了新的文献求助10
14秒前
还我益达发布了新的文献求助10
14秒前
所所应助楠12采纳,获得10
15秒前
搞怪从菡发布了新的文献求助10
16秒前
隐形曼青应助FAN采纳,获得30
16秒前
情怀应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
睡觉觉关注了科研通微信公众号
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
18秒前
领导范儿应助科研通管家采纳,获得10
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
千跃应助科研通管家采纳,获得10
18秒前
SYLH应助科研通管家采纳,获得30
19秒前
yookia应助科研通管家采纳,获得40
19秒前
Akim应助科研通管家采纳,获得10
19秒前
CodeCraft应助科研通管家采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105