Deep learning classification of systemic sclerosis from multi-site photoplethysmography signals

光容积图 线性判别分析 人工智能 模式识别(心理学) 卷积神经网络 医学 计算机科学 计算机视觉 滤波器(信号处理)
作者
Sadaf Iqbal,Jaume Bacardit,Bridget Griffiths,John Allen
出处
期刊:Frontiers in Physiology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fphys.2023.1242807
摘要

Introduction: A pilot study assessing a novel approach to identify patients with Systemic Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG) waveforms ("DL-PPG"). Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and 20 SSc patients. RGB scalogram images were obtained from the PPG, using the continuous wavelet transform (CWT). 2 different pre-trained convolutional neural networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify the SSc and Control groups, evaluating their performance using 10-fold stratified cross validation (CV). Their classification performance (i.e., accuracy, sensitivity, and specificity, with 95% confidence intervals) was also compared to traditional machine learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN). Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for GoogLeNet were 83.1 (72.3-90.9), 75.0 (50.9-91.3) and 86.3 (73.7-94.3)% respectively, and for EfficientNetB0 were 87.3 (77.2-94.0), 80.0 (56.3-94.3) and 90.1 (78.6-96.7)%. The corresponding results for ML classification using LDA were 66.2 (53.9-77.0), 65.0 (40.8-84.6) and 66.7 (52.1-79.2)% respectively, and for KNN were 76.1 (64.5-85.4), 40.0 (19.1-63.9), and 90.2 (78.6-96.7)% respectively. Discussion: This study shows the potential of DL-PPG classification using CNNs to detect SSc. EfficientNetB0 gave an overall improved performance compared to GoogLeNet, with both CNNs performing better than the traditional ML methods tested. Our automatic AI approach, using transfer learning, could offer significant benefits for SSc diagnostics in a variety of clinical settings where low-cost portable and easy-to-use diagnostics can be beneficial.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
你的男孩广坤完成签到,获得积分10
刚刚
MiaJ完成签到 ,获得积分10
刚刚
1秒前
飞奔的晶粒完成签到,获得积分10
2秒前
苹果烧鹅完成签到,获得积分10
2秒前
丁真先生完成签到,获得积分10
4秒前
懒大王发布了新的文献求助10
6秒前
8秒前
sunaijia完成签到,获得积分10
10秒前
科研通AI2S应助端庄书雁采纳,获得10
10秒前
11秒前
积极绿老头应助小猪啵比采纳,获得10
13秒前
13秒前
bob完成签到,获得积分10
14秒前
juanjuan应助小龅牙吖采纳,获得10
15秒前
从容飞阳完成签到,获得积分10
16秒前
拼搏的代玉完成签到,获得积分10
17秒前
17秒前
科研通AI2S应助Linya采纳,获得10
19秒前
19秒前
19秒前
迷路尔曼发布了新的文献求助20
19秒前
20秒前
21秒前
zzzxxx发布了新的文献求助10
21秒前
zhjp发布了新的文献求助10
22秒前
白小白发布了新的文献求助10
23秒前
七七发布了新的文献求助10
24秒前
铁铁发布了新的文献求助10
24秒前
26秒前
27秒前
27秒前
zhjp完成签到,获得积分10
28秒前
Jun应助194711采纳,获得10
30秒前
30秒前
30秒前
橘子星发布了新的文献求助10
32秒前
L_Gary完成签到,获得积分10
33秒前
刘文静发布了新的文献求助10
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161167
求助须知:如何正确求助?哪些是违规求助? 2812556
关于积分的说明 7895642
捐赠科研通 2471395
什么是DOI,文献DOI怎么找? 1315977
科研通“疑难数据库(出版商)”最低求助积分说明 631074
版权声明 602112