光容积图
线性判别分析
人工智能
模式识别(心理学)
卷积神经网络
医学
计算机科学
计算机视觉
滤波器(信号处理)
作者
Sadaf Iqbal,Jaume Bacardit,Bridget Griffiths,John Allen
标识
DOI:10.3389/fphys.2023.1242807
摘要
Introduction: A pilot study assessing a novel approach to identify patients with Systemic Sclerosis (SSc) using deep learning analysis of multi-site photoplethysmography (PPG) waveforms ("DL-PPG"). Methods: PPG recordings having baseline, unilateral arm pressure cuff occlusion and reactive hyperaemia flush phases from 6 body sites were studied in 51 Controls and 20 SSc patients. RGB scalogram images were obtained from the PPG, using the continuous wavelet transform (CWT). 2 different pre-trained convolutional neural networks (CNNs, namely, GoogLeNet and EfficientNetB0) were trained to classify the SSc and Control groups, evaluating their performance using 10-fold stratified cross validation (CV). Their classification performance (i.e., accuracy, sensitivity, and specificity, with 95% confidence intervals) was also compared to traditional machine learning (ML), i.e., Linear Discriminant Analysis (LDA) and K-Nearest Neighbour (KNN). Results: On a participant basis DL-PPG accuracy, sensitivity and specificity for GoogLeNet were 83.1 (72.3-90.9), 75.0 (50.9-91.3) and 86.3 (73.7-94.3)% respectively, and for EfficientNetB0 were 87.3 (77.2-94.0), 80.0 (56.3-94.3) and 90.1 (78.6-96.7)%. The corresponding results for ML classification using LDA were 66.2 (53.9-77.0), 65.0 (40.8-84.6) and 66.7 (52.1-79.2)% respectively, and for KNN were 76.1 (64.5-85.4), 40.0 (19.1-63.9), and 90.2 (78.6-96.7)% respectively. Discussion: This study shows the potential of DL-PPG classification using CNNs to detect SSc. EfficientNetB0 gave an overall improved performance compared to GoogLeNet, with both CNNs performing better than the traditional ML methods tested. Our automatic AI approach, using transfer learning, could offer significant benefits for SSc diagnostics in a variety of clinical settings where low-cost portable and easy-to-use diagnostics can be beneficial.
科研通智能强力驱动
Strongly Powered by AbleSci AI