Deep Learning-Based Detection and Classification of Bone Lesions on Staging Computed Tomography in Prostate Cancer: A Development Study

前列腺癌 计算机断层摄影术 医学 放射科 癌症检测 癌症 医学物理学 内科学
作者
Mason J. Belue,Stephanie Harmon,Dong Yang,Julie Y. An,Sonia Gaur,Yan Mee Law,Evrim Türkbey,Ziyue Xu,Jesse Tetreault,Nathan Lay,Enis C. Yilmaz,Tim Phelps,Benjamin Simon,Liza Lindenberg,Esther Mena,Peter A. Pinto,Ulaş Bağcı,Bradford J. Wood,Deborah E. Citrin,William L. Dahut,Ravi A. Madan,James L. Gulley,Daguang Xu,Peter L. Choyke,Barış Türkbey
出处
期刊:Academic Radiology [Elsevier]
标识
DOI:10.1016/j.acra.2024.01.009
摘要

Efficiently detecting and characterizing metastatic bone lesions on staging CT is crucial for prostate cancer (PCa) care. However, it demands significant expert time and additional imaging such as PET/CT. We aimed to develop an ensemble of two automated deep learning AI models for 1) bone lesion detection and segmentation and 2) benign vs. metastatic lesion classification on staging CTs and to compare its performance with radiologists.This retrospective study developed two AI models using 297 staging CT scans (81 metastatic) with 4601 benign and 1911 metastatic lesions in PCa patients. Metastases were validated by follow-up scans, bone biopsy, or PET/CT. Segmentation AI (3DAISeg) was developed using the lesion contours delineated by a radiologist. 3DAISeg performance was evaluated with the Dice similarity coefficient, and classification AI (3DAIClass) performance on AI and radiologist contours was assessed with F1-score and accuracy. Training/validation/testing data partitions of 70:15:15 were used. A multi-reader study was performed with two junior and two senior radiologists within a subset of the testing dataset (n = 36).In 45 unseen staging CT scans (12 metastatic PCa) with 669 benign and 364 metastatic lesions, 3DAISeg detected 73.1% of metastatic (266/364) and 72.4% of benign lesions (484/669). Each scan averaged 12 extra segmentations (range: 1-31). All metastatic scans had at least one detected metastatic lesion, achieving a 100% patient-level detection. The mean Dice score for 3DAISeg was 0.53 (median: 0.59, range: 0-0.87). The F1 for 3DAIClass was 94.8% (radiologist contours) and 92.4% (3DAISeg contours), with a median false positive of 0 (range: 0-3). Using radiologist contours, 3DAIClass had PPV and NPV rates comparable to junior and senior radiologists: PPV (semi-automated approach AI 40.0% vs. Juniors 32.0% vs. Seniors 50.0%) and NPV (AI 96.2% vs. Juniors 95.7% vs. Seniors 91.9%). When using 3DAISeg, 3DAIClass mimicked junior radiologists in PPV (pure-AI 20.0% vs. Juniors 32.0% vs. Seniors 50.0%) but surpassed seniors in NPV (pure-AI 93.8% vs. Juniors 95.7% vs. Seniors 91.9%).Our lesion detection and classification AI model performs on par with junior and senior radiologists in discerning benign and metastatic lesions on staging CTs obtained for PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dy发布了新的文献求助30
1秒前
tannie完成签到 ,获得积分10
1秒前
慕青应助舟遥遥采纳,获得10
1秒前
110完成签到,获得积分10
3秒前
wonderbgt完成签到,获得积分10
7秒前
陆离完成签到 ,获得积分10
10秒前
隐形曼青应助哎哟很烦采纳,获得10
10秒前
聪明邪欢完成签到,获得积分10
11秒前
和平港湾完成签到,获得积分10
12秒前
优美的千万完成签到,获得积分10
13秒前
14秒前
15秒前
李爱国应助qmx采纳,获得10
16秒前
科研通AI2S应助overThat采纳,获得10
16秒前
踏实的嵩完成签到,获得积分10
17秒前
眼睛大的剑心完成签到 ,获得积分20
17秒前
大模型应助666采纳,获得10
18秒前
稳重紫蓝完成签到 ,获得积分10
19秒前
gxpjzbg完成签到,获得积分10
19秒前
激动的乐安完成签到 ,获得积分10
19秒前
孤独的橘子完成签到,获得积分10
21秒前
22秒前
23秒前
ningasd完成签到 ,获得积分10
24秒前
净禅完成签到 ,获得积分10
28秒前
28秒前
霜降发布了新的文献求助10
28秒前
小丸子呀完成签到 ,获得积分10
29秒前
30秒前
朴实的绿兰完成签到 ,获得积分10
30秒前
carlitos完成签到 ,获得积分10
31秒前
刘天完成签到,获得积分10
31秒前
盛开的芒果完成签到,获得积分10
31秒前
被动科研完成签到,获得积分10
32秒前
110发布了新的文献求助10
33秒前
小蘑菇应助嗯嗯采纳,获得10
35秒前
隐形白开水完成签到,获得积分10
35秒前
FR完成签到,获得积分10
35秒前
重要的平灵完成签到 ,获得积分10
36秒前
成就映秋发布了新的文献求助10
38秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3085525
求助须知:如何正确求助?哪些是违规求助? 2738394
关于积分的说明 7549581
捐赠科研通 2388186
什么是DOI,文献DOI怎么找? 1266339
科研通“疑难数据库(出版商)”最低求助积分说明 613430
版权声明 598591