分割
计算机科学
人工智能
编码器
保险丝(电气)
特征(语言学)
比例(比率)
融合机制
推论
模式识别(心理学)
序列(生物学)
编码(集合论)
计算机视觉
职位(财务)
特征提取
融合
地图学
工程类
地理
语言学
哲学
经济
集合(抽象数据类型)
电气工程
程序设计语言
遗传学
操作系统
脂质双层融合
生物
财务
作者
Ming Kang,Chee-Ming Ting,Fung Fung Ting,Raphaël C. -W. Phan
出处
期刊:Cornell University - arXiv
日期:2023-01-01
被引量:1
标识
DOI:10.48550/arxiv.2312.06458
摘要
We propose a novel Attentional Scale Sequence Fusion based You Only Look Once (YOLO) framework (ASF-YOLO) which combines spatial and scale features for accurate and fast cell instance segmentation. Built on the YOLO segmentation framework, we employ the Scale Sequence Feature Fusion (SSFF) module to enhance the multi-scale information extraction capability of the network, and the Triple Feature Encoder (TPE) module to fuse feature maps of different scales to increase detailed information. We further introduce a Channel and Position Attention Mechanism (CPAM) to integrate both the SSFF and TPE modules, which focus on informative channels and spatial position-related small objects for improved detection and segmentation performance. Experimental validations on two cell datasets show remarkable segmentation accuracy and speed of the proposed ASF-YOLO model. It achieves a box mAP of 0.91, mask mAP of 0.887, and an inference speed of 47.3 FPS on the 2018 Data Science Bowl dataset, outperforming the state-of-the-art methods. The source code is available at https://github.com/mkang315/ASF-YOLO.
科研通智能强力驱动
Strongly Powered by AbleSci AI