The longitudinal relationships between short video addiction and depressive symptoms: A cross-lagged panel network analysis

上瘾 心理学 心情 感觉 心理健康 无血性 临床心理学 理解力 抑郁症状 精神科 认知 社会心理学 语言学 哲学 精神分裂症(面向对象编程)
作者
Diyang Qu,Bowen Liu,Luxia Jia,Xuan Zhang,Dongyang Chen,Quan Zhang,Yi Feng,Runsen Chen
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:152: 108059-108059 被引量:20
标识
DOI:10.1016/j.chb.2023.108059
摘要

Short video addiction, a specific type of internet addiction, has emerged as a significant problem among youth today. The high prevalence of co-occurring mood problems, such as depressive symptoms, in individuals with short video addiction poses additional challenges for treatment. However, the extent to which these symptoms interact, predict each other, and further maintain the problems remains unclear. Therefore, this study employed cross-lagged panel network analysis to reveal the directional network structure between the co-occurrence of short video addiction and depressive symptoms in a sample of 1163 Chinese youth. The findings indicate that specific symptoms of addiction, namely 'Tolerance', and depressive symptoms such as 'Anhedonia', predicted the subsequent development of symptoms for each mental health issue. Furthermore, both the addiction problem 'Conflict' and emotional feelings such as 'Sad mood' may serve as bridge symptoms linking the co-occurrence of these two mental health issues. These findings contribute to a profound comprehension of the interrelationships and evolution of these conditions over time, revealing the underlying mechanisms behind the high relapse rates observed in addiction treatment strategies. In other words, the key symptoms and bridge symptoms identified in this study can be prioritized as targets for preventing and treating short video addiction in this particular population. By disrupting any interconnectedness between short video addiction and depressive symptoms, we can avoid the progression or escalation of co-occurring issues, leading to more effective and comprehensive treatment outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
camera完成签到 ,获得积分20
刚刚
zino发布了新的文献求助10
刚刚
reck发布了新的文献求助10
1秒前
1秒前
苹果追命完成签到,获得积分20
2秒前
2秒前
烟花应助8564523采纳,获得10
2秒前
lkl完成签到 ,获得积分10
2秒前
01259发布了新的文献求助10
3秒前
3秒前
金子完成签到,获得积分10
3秒前
阳光下的星星完成签到,获得积分10
3秒前
顾己发布了新的文献求助10
3秒前
搁浅发布了新的文献求助10
3秒前
大桶水果茶完成签到,获得积分10
3秒前
闪闪飞机发布了新的文献求助10
4秒前
打打应助蔡蔡不菜菜采纳,获得10
4秒前
艺玲发布了新的文献求助10
4秒前
5秒前
坚果发布了新的文献求助10
5秒前
宋嬴一发布了新的文献求助10
5秒前
sweetbearm应助丞诺采纳,获得10
5秒前
5秒前
情怀应助缥缈的碧萱采纳,获得10
5秒前
一株多肉完成签到,获得积分10
6秒前
柯柯完成签到,获得积分10
6秒前
是赤赤呀完成签到,获得积分10
6秒前
阮人雄完成签到,获得积分10
6秒前
王饱饱完成签到 ,获得积分10
6秒前
Mr_Hao完成签到,获得积分10
7秒前
Keira_Chang完成签到,获得积分10
7秒前
起承转合完成签到 ,获得积分10
7秒前
风姿物语完成签到,获得积分10
8秒前
xiaopeng完成签到,获得积分10
8秒前
Jenny应助艺玲采纳,获得10
9秒前
一平发布了新的文献求助80
9秒前
樱桃味的火苗完成签到,获得积分10
9秒前
9秒前
波波完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672