Tricarboxylic Acid Cycle Metabolite-Coordinated Biohydrogels Augment Cranial Bone Regeneration Through Neutrophil-Stimulated Mesenchymal Stem Cell Recruitment and Histone Acetylation-Mediated Osteogenesis

间充质干细胞 自愈水凝胶 细胞生物学 再生(生物学) 材料科学 诱导多能干细胞 生物 生物化学 胚胎干细胞 基因 高分子化学
作者
Tingjun Liu,Ziying You,Fangyuan Shen,Puying Yang,Junyu Chen,Shuhuai Meng,Chenglin Wang,Ding Xiong,Chengjia You,Zhenming Wang,Yu Shi,Ling Ye
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (5): 5486-5503 被引量:3
标识
DOI:10.1021/acsami.3c15473
摘要

Cranial bone defects remain a major clinical challenge, increasing patients' life burdens. Tricarboxylic acid (TCA) cycle metabolites play crucial roles in facilitating bone tissue regeneration. However, the development of TCA cycle metabolite-modified biomimetic grafts for skull bone regeneration still needs to be improved. The mechanism underlying the release of TCA cycle metabolites from biomaterials in regulating immune responses and mesenchymal stem cell (MSC) fate (migration and differentiation) remains unknown. Herein, this work constructs biomimetic hydrogels composed of gelatin and chitosan networks covalently cross-linked by genipin (CGG hydrogels). A series of TCA cycle metabolite-coordinated CGG hydrogels with strong mechanical and antiswelling performances are subsequently developed. Remarkably, the citrate (Na3Cit, Cit)-coordinated CGG hydrogels (CGG-Cit hydrogels) with the highest mechanical modulus and strength significantly promote skull bone regeneration in rat and murine cranial defects. Mechanistically, using a transgenic mouse model, bulk RNA sequencing, and single-cell RNA sequencing, this work demonstrates that CGG-Cit hydrogels promote Gli1+ MSC migration via neutrophil-secreted oncostatin M. Results also indicate that citrate improves osteogenesis via enhanced histone H3K9 acetylation on osteogenic master genes. Taken together, the immune microenvironment- and MSC fate-regulated CGG-Cit hydrogels represent a highly efficient and facile approach toward skull bone tissue regeneration with great potential for bench-to-bedside translation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助YIWENNN采纳,获得10
刚刚
刚刚
刚刚
小飞完成签到,获得积分10
2秒前
lqh0211发布了新的文献求助10
2秒前
seven完成签到,获得积分10
3秒前
372721759完成签到,获得积分10
3秒前
辛羽完成签到,获得积分10
4秒前
SYLH应助shengpingyang采纳,获得10
4秒前
4秒前
朴实如冰发布了新的文献求助10
4秒前
桐桐应助yaya采纳,获得10
5秒前
5秒前
jjj发布了新的文献求助10
5秒前
小飞发布了新的文献求助10
6秒前
沉默凌雪发布了新的文献求助30
6秒前
Orange应助zxj采纳,获得10
6秒前
Furmark_14完成签到,获得积分10
7秒前
7秒前
自由之柔发布了新的文献求助10
8秒前
树阴照水发布了新的文献求助10
9秒前
9秒前
偏执发布了新的文献求助10
9秒前
酷波er应助liugm采纳,获得10
10秒前
11秒前
小马甲应助背后海亦采纳,获得10
11秒前
cldg发布了新的文献求助10
12秒前
情怀应助直率的花生采纳,获得10
13秒前
陈JY完成签到 ,获得积分10
13秒前
FashionBoy应助跬步一积采纳,获得30
13秒前
xiaohai完成签到,获得积分20
13秒前
YIWENNN发布了新的文献求助10
13秒前
朴实如冰完成签到,获得积分10
15秒前
灿烂sunfly完成签到,获得积分10
16秒前
jjj完成签到,获得积分10
17秒前
19秒前
20秒前
图图应助shengpingyang采纳,获得30
21秒前
21秒前
机灵的煎蛋完成签到,获得积分10
23秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741065
求助须知:如何正确求助?哪些是违规求助? 3283833
关于积分的说明 10037107
捐赠科研通 3000659
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783804
科研通“疑难数据库(出版商)”最低求助积分说明 750427