已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Molecular self-assembled monolayers anomalously enhance thermal conductance across polymer–semiconductor interfaces

单层 材料科学 微电子 界面热阻 自组装单层膜 聚合物 半导体 纳米技术 化学物理 分子 热导率 聚苯乙烯 硅烷 热阻 热的 光电子学 化学 复合材料 有机化学 热力学 物理
作者
Jinlong He,Lei Tao,Weikang Xian,Tom Arbaugh,Ying Li
出处
期刊:Nanoscale [The Royal Society of Chemistry]
卷期号:14 (47): 17681-17693 被引量:6
标识
DOI:10.1039/d2nr04936h
摘要

Thermal issues have become increasingly important for the performance and lifetime of highly miniaturized and integrated devices. However, the high thermal resistance across the polymer/semiconductor interface greatly weakens the fast heat dissipation. In this study, applying the self-assembled monolayer (SAM) technique, organic molecules are employed as heat regulators to mediate interfacial thermal conductance (ITC) between semiconductors (silicon or Si) and polymers (polystyrene or PS). Silane-based SAM molecules with unique functional groups, such as -NH2, -CH3, -SH, and -Cl, are orderly assembled into Si-PS interfaces. Their roles in ITC and the heat transfer mechanism were systematically investigated. Molecular simulations demonstrate that the Si-PS interface decorated with SAM molecules can significantly facilitate heat transfer in varying degrees. Such a difference is primarily due to the different non-bonded interactions and compatibility between SAMs and PS. Compared with the pristine Si-PS interface, the interface incorporated with 3-chloropropyl trimethoxysilane shows the greatest improvement in ITC, about 507.02%. Such improvements are largely attributed to the SAM molecules, as the thermal bridges straighten the molecular SAM chains, develop strong non-bonded interactions with PS, provide the covalent bonding between Si and PS, exhibit a strong coupling effect between two materials' vibrational modes, and eliminate the discontinuities in the temperature field. Eventually, these demonstrations are expected to offer molecular insights to enable effective thermal management through surface engineering for critical-heat transfer materials and microelectronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我要毕业完成签到 ,获得积分10
6秒前
畅快的刚完成签到,获得积分10
7秒前
7秒前
羞涩的小小完成签到 ,获得积分10
7秒前
桐桐应助云帆SaMa采纳,获得10
7秒前
小齐完成签到,获得积分10
9秒前
11秒前
12秒前
15秒前
17秒前
溶胶发布了新的文献求助10
20秒前
脑洞疼应助闪闪鸿煊采纳,获得10
21秒前
琉璃完成签到,获得积分10
22秒前
刘一帆完成签到,获得积分10
23秒前
小黄完成签到 ,获得积分10
24秒前
24秒前
25秒前
白桃完成签到 ,获得积分10
25秒前
左欣关注了科研通微信公众号
26秒前
溶胶完成签到,获得积分10
28秒前
科研通AI2S应助奶茶的后来采纳,获得10
28秒前
细腻慕儿发布了新的文献求助10
31秒前
小哇发布了新的文献求助10
31秒前
奋斗灵波完成签到,获得积分10
32秒前
星弟完成签到 ,获得积分10
32秒前
Ava应助多情的安阳采纳,获得10
33秒前
开心的兔子完成签到 ,获得积分20
34秒前
34秒前
fengyvan完成签到 ,获得积分10
36秒前
36秒前
38秒前
38秒前
路过完成签到,获得积分10
40秒前
suk发布了新的文献求助10
42秒前
He完成签到,获得积分10
43秒前
元友容完成签到 ,获得积分10
45秒前
zyh发布了新的文献求助20
45秒前
华仔应助朴素摩托采纳,获得10
46秒前
斯文败类应助左欣采纳,获得30
48秒前
L_93完成签到,获得积分10
50秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056349
求助须知:如何正确求助?哪些是违规求助? 2712892
关于积分的说明 7433585
捐赠科研通 2357851
什么是DOI,文献DOI怎么找? 1249112
科研通“疑难数据库(出版商)”最低求助积分说明 606850
版权声明 596195