Potential of C-Band Sentinel-1 Data for Estimating Soil Moisture and Surface Roughness in a Watershed in Western France

含水量 雷达 表面粗糙度 土壤科学 遥感 环境科学 表面光洁度 水分 水文学(农业) 气象学 地质学 地理 物理 计算机科学 材料科学 岩土工程 复合材料 电信 量子力学
作者
H. Zayani,Mehrez Zribi,Nicolas Baghdadi,Emna Ayari,Zeineb Kassouk,Zohra Lili‐Chabaane,Didier Michot,Christian Walter,Youssef Fouad
标识
DOI:10.1109/igarss46834.2022.9883957
摘要

Radar remote sensing has shown a high potential for soil surface parameters estimation in different pedo-climatic context. In the present study, we investigated Sentinel-l radar signal in order to analyze its behavior as function of soil moisture and soil roughness. In addition, we evaluated the approach combining the modified Integral Equation Model (IEM-B) and the Water Cloud Model (WCM) for estimating soil moisture in western France. Soil surface parameters were acquired over 4 campaigns during which composite soil samples were collected simultaneously to Sentinel-l acquisition dates. The dates of those campaigns were defined according to the evolution of the soil surface condition, during the agricultural season. The sensitivity of radar signal $\sigma 0$ to soil moisture was studied over the 22 reference fields and over the Thiessen polygons created around the measurement points. Linear relationships are observed between the radar signal and volumetric soil moisture less than 35 vol. % with higher sensitivity for VH polarization (0.41 dB/vol.% in VH against 0.26 dB/vol.% in VV). The best correlation coefficients (R) were observed for the VH polarization with the Zs roughness parameter $(\mathrm{R}={}$ 0.53 and 0.29 for reference fields and Thiessen polygons, respectively). Following that, a comparison of in situ soil moisture with that predicted based on approach proposed by [1], using Neural network algorithm with a training using the two models IEM-B and Water Cloud Model (WCM) allowed an accuracy with an RMSE ranging between 6.1 and 6.5 vol. % for reference fields and Thiessen polygons respectively. These results confirm that the proposed algorithm is accurate to estimate soil moisture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃饭学习睡觉完成签到,获得积分10
刚刚
tutulunzi完成签到,获得积分10
刚刚
曾经二娘完成签到,获得积分10
刚刚
luwenxuan完成签到,获得积分10
3秒前
我是老大应助冷酷的冰旋采纳,获得10
5秒前
小谌谌完成签到,获得积分10
5秒前
Owen应助llll采纳,获得30
5秒前
6秒前
yangjianya完成签到,获得积分10
7秒前
在路上完成签到 ,获得积分10
7秒前
多和5的武器完成签到,获得积分10
8秒前
可爱的函函应助125ljw采纳,获得10
8秒前
8秒前
景景发布了新的文献求助10
8秒前
興崋完成签到 ,获得积分10
9秒前
wanci应助饱满初雪采纳,获得10
10秒前
努尔发布了新的文献求助10
10秒前
aifeeling完成签到,获得积分10
10秒前
Rejsjer发布了新的文献求助30
11秒前
冷酷的冰旋完成签到,获得积分20
11秒前
pokexuejiao完成签到,获得积分10
12秒前
在路上关注了科研通微信公众号
12秒前
13秒前
李健应助科研小菜采纳,获得10
15秒前
16秒前
计时器响了完成签到,获得积分10
16秒前
眯眯眼的衬衫应助echo采纳,获得10
18秒前
请叫我风吹麦浪应助周周采纳,获得10
18秒前
19秒前
pluto应助诗凌采纳,获得30
19秒前
SciGPT应助陌路孤星采纳,获得10
21秒前
Wang完成签到,获得积分10
22秒前
科研小菜完成签到,获得积分10
22秒前
爆米花应助balalal采纳,获得10
23秒前
gxmu6322发布了新的文献求助10
23秒前
故意的冰烟关注了科研通微信公众号
24秒前
昨日长河发布了新的文献求助10
25秒前
25秒前
yx阿聪完成签到,获得积分10
25秒前
吕婉婉给吕婉婉的求助进行了留言
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461678
求助须知:如何正确求助?哪些是违规求助? 3055353
关于积分的说明 9047590
捐赠科研通 2745170
什么是DOI,文献DOI怎么找? 1506011
科研通“疑难数据库(出版商)”最低求助积分说明 695973
邀请新用户注册赠送积分活动 695380