GLADS: A global-local attention data selection model for multimodal multitask encrypted traffic classification of IoT

计算机科学 物联网 人工智能 特征选择 选择(遗传算法) 测距 机器学习 数据挖掘 嵌入式系统 电信
作者
Jianbang Dai,Xiaolong Xu,Fu Xiao
出处
期刊:Computer Networks [Elsevier]
卷期号:225: 109652-109652 被引量:14
标识
DOI:10.1016/j.comnet.2023.109652
摘要

With the rapid development of the Internet of Things (IoT), numerous of IoT devices and different characteristics in IoT traffic patterns need traffic classification to enable many important applications. Deep-learning-based (DL-based) traffic methods have gained increasing attention due to their high accuracy and because manual feature extraction is not needed. Furthermore, seek a lightweight, multitask methods that supports a “performance-speed” trade-off. Thus, we proposed the 0.11 M global-local attention data selection (GLADS) model. The core of the GLADS model includes an “indicator” mechanism and a “local + global” framework. The “indicator” mechanism is a completely different method for handling multimodal input that allows the model to efficiently extract features from multimodal input with a single-modal-like approach. The “local + global” framework for the “performance-speed” trade-off includes a “local” part to obtain the features of each patch in the model input and a Global-Local Attention mechanism in the “global” part outputs the classification results under all possible lengths. Tests on the ISCX-VPN-2016, ISCX-Tor-2016, USTC-TFC-2016, and TON_IoT datasets show that GLADS achieves better performance than several state-of-the-art baselines, ranging from 2.42% to 7.76%. Furthermore, we also propose the “indicator,” which allows the model to simply cope with multimodal input. Based on global-local attention, we analyze the relation of the input section and model performance in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孙伟健发布了新的文献求助10
1秒前
深情安青应助Dopamine采纳,获得10
1秒前
da发布了新的文献求助10
1秒前
2秒前
lxy完成签到,获得积分10
3秒前
4秒前
华仔应助hh采纳,获得10
4秒前
学勾巴发布了新的文献求助10
4秒前
凤爪关注了科研通微信公众号
5秒前
天天快乐应助dayrim采纳,获得10
5秒前
6秒前
6秒前
烟花应助ellarqwn采纳,获得10
7秒前
rcf完成签到,获得积分10
7秒前
8秒前
xxfsx应助任侠传采纳,获得10
9秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
星辰大海应助wql采纳,获得10
10秒前
10秒前
斯文败类应助于庭采纳,获得10
11秒前
Oasis发布了新的文献求助10
12秒前
怡然的飞风完成签到,获得积分20
12秒前
Tcell完成签到,获得积分10
13秒前
酷波er应助独特南霜采纳,获得10
13秒前
zz发布了新的文献求助10
13秒前
聪明蛋挞应助孙伟健采纳,获得10
13秒前
Akim应助伍声痕采纳,获得10
13秒前
13秒前
llt关闭了llt文献求助
14秒前
15秒前
高挑的牛青完成签到,获得积分10
15秒前
丰富的乌冬面应助CYYDNDB采纳,获得10
16秒前
科研通AI2S应助CYYDNDB采纳,获得10
16秒前
lincsh发布了新的文献求助10
18秒前
19秒前
李lll发布了新的文献求助30
21秒前
兴奋奇异果完成签到,获得积分10
21秒前
qqqq22完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424595
求助须知:如何正确求助?哪些是违规求助? 4538935
关于积分的说明 14164426
捐赠科研通 4455911
什么是DOI,文献DOI怎么找? 2443990
邀请新用户注册赠送积分活动 1435069
关于科研通互助平台的介绍 1412452