GLADS: A global-local attention data selection model for multimodal multitask encrypted traffic classification of IoT

计算机科学 物联网 人工智能 特征选择 选择(遗传算法) 测距 机器学习 数据挖掘 嵌入式系统 电信
作者
Jianbang Dai,Xiaolong Xu,Fu Xiao
出处
期刊:Computer Networks [Elsevier]
卷期号:225: 109652-109652
标识
DOI:10.1016/j.comnet.2023.109652
摘要

With the rapid development of the Internet of Things (IoT), numerous of IoT devices and different characteristics in IoT traffic patterns need traffic classification to enable many important applications. Deep-learning-based (DL-based) traffic methods have gained increasing attention due to their high accuracy and because manual feature extraction is not needed. Furthermore, seek a lightweight, multitask methods that supports a “performance-speed” trade-off. Thus, we proposed the 0.11 M global-local attention data selection (GLADS) model. The core of the GLADS model includes an “indicator” mechanism and a “local + global” framework. The “indicator” mechanism is a completely different method for handling multimodal input that allows the model to efficiently extract features from multimodal input with a single-modal-like approach. The “local + global” framework for the “performance-speed” trade-off includes a “local” part to obtain the features of each patch in the model input and a Global-Local Attention mechanism in the “global” part outputs the classification results under all possible lengths. Tests on the ISCX-VPN-2016, ISCX-Tor-2016, USTC-TFC-2016, and TON_IoT datasets show that GLADS achieves better performance than several state-of-the-art baselines, ranging from 2.42% to 7.76%. Furthermore, we also propose the “indicator,” which allows the model to simply cope with multimodal input. Based on global-local attention, we analyze the relation of the input section and model performance in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Daisy发布了新的文献求助10
刚刚
刚刚
缓慢咖啡发布了新的文献求助10
2秒前
hahaha完成签到,获得积分10
2秒前
jasmineyy发布了新的文献求助10
2秒前
白水发布了新的文献求助10
3秒前
Titi完成签到,获得积分10
4秒前
5秒前
赘婿应助秘书处堂采纳,获得10
5秒前
5秒前
汉堡包应助chen采纳,获得30
5秒前
hahaha发布了新的文献求助10
5秒前
Mrking发布了新的文献求助10
6秒前
司马绮山完成签到,获得积分10
6秒前
善学以致用应助micomico采纳,获得10
7秒前
jasmineyy完成签到,获得积分10
7秒前
9秒前
9秒前
Flaxy完成签到,获得积分20
10秒前
11秒前
11秒前
13秒前
研友_ZAxX6n发布了新的文献求助10
14秒前
光亮夏槐完成签到 ,获得积分10
15秒前
bohn123完成签到 ,获得积分10
16秒前
会撒娇的小猫咪完成签到,获得积分10
16秒前
ya发布了新的文献求助30
16秒前
纯真寻冬完成签到,获得积分10
16秒前
susu发布了新的文献求助30
17秒前
18秒前
NexusExplorer应助ling采纳,获得10
18秒前
18秒前
CipherSage应助哈哈哈采纳,获得10
18秒前
以一发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
xlq完成签到,获得积分20
20秒前
Daisy完成签到,获得积分10
21秒前
搞不动科研完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076804
求助须知:如何正确求助?哪些是违规求助? 2729802
关于积分的说明 7510010
捐赠科研通 2378023
什么是DOI,文献DOI怎么找? 1260989
科研通“疑难数据库(出版商)”最低求助积分说明 611204
版权声明 597203