GLADS: A global-local attention data selection model for multimodal multitask encrypted traffic classification of IoT

计算机科学 物联网 人工智能 特征选择 选择(遗传算法) 测距 机器学习 数据挖掘 嵌入式系统 电信
作者
Jianbang Dai,Xiaolong Xu,Fu Xiao
出处
期刊:Computer Networks [Elsevier BV]
卷期号:225: 109652-109652 被引量:14
标识
DOI:10.1016/j.comnet.2023.109652
摘要

With the rapid development of the Internet of Things (IoT), numerous of IoT devices and different characteristics in IoT traffic patterns need traffic classification to enable many important applications. Deep-learning-based (DL-based) traffic methods have gained increasing attention due to their high accuracy and because manual feature extraction is not needed. Furthermore, seek a lightweight, multitask methods that supports a “performance-speed” trade-off. Thus, we proposed the 0.11 M global-local attention data selection (GLADS) model. The core of the GLADS model includes an “indicator” mechanism and a “local + global” framework. The “indicator” mechanism is a completely different method for handling multimodal input that allows the model to efficiently extract features from multimodal input with a single-modal-like approach. The “local + global” framework for the “performance-speed” trade-off includes a “local” part to obtain the features of each patch in the model input and a Global-Local Attention mechanism in the “global” part outputs the classification results under all possible lengths. Tests on the ISCX-VPN-2016, ISCX-Tor-2016, USTC-TFC-2016, and TON_IoT datasets show that GLADS achieves better performance than several state-of-the-art baselines, ranging from 2.42% to 7.76%. Furthermore, we also propose the “indicator,” which allows the model to simply cope with multimodal input. Based on global-local attention, we analyze the relation of the input section and model performance in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hqy完成签到,获得积分20
1秒前
领导范儿应助charm12采纳,获得10
1秒前
感动又晴完成签到,获得积分10
1秒前
2秒前
苦难诗社发布了新的文献求助10
2秒前
2秒前
yatou5651发布了新的文献求助10
3秒前
3秒前
许子健发布了新的文献求助10
4秒前
nini发布了新的文献求助10
4秒前
4秒前
开朗的山彤应助张阿童木采纳,获得10
4秒前
追寻依风发布了新的文献求助10
4秒前
隐形曼青应助雾昂采纳,获得10
4秒前
5秒前
betsy发布了新的文献求助10
6秒前
wuhuhu关注了科研通微信公众号
6秒前
eAN完成签到,获得积分10
6秒前
zl完成签到,获得积分10
6秒前
桐桐应助yyyhhh采纳,获得10
6秒前
7秒前
亓大大发布了新的文献求助10
7秒前
香蕉觅云应助反方向的钟采纳,获得30
7秒前
hqy发布了新的文献求助20
7秒前
852应助Gotyababy采纳,获得10
7秒前
seven发布了新的文献求助10
8秒前
PAN完成签到,获得积分10
8秒前
9秒前
香蕉觅云应助Han采纳,获得10
9秒前
太阳发布了新的文献求助10
9秒前
Mia完成签到,获得积分10
9秒前
飞飞发布了新的文献求助10
9秒前
Yu发布了新的文献求助10
9秒前
zyq发布了新的文献求助10
10秒前
黄丁文完成签到,获得积分20
10秒前
10秒前
风中的曼彤完成签到 ,获得积分10
11秒前
复杂的语蕊完成签到,获得积分10
11秒前
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646