CATCL: Joint Cross-Attention Transfer and Contrastive Learning for Cross-Domain Recommendation

计算机科学 领域(数学分析) 代表(政治) 接头(建筑物) 人工智能 推荐系统 特征(语言学) 特征学习 学习迁移 相关性(法律) 人气 机器学习 数据挖掘 情报检索 建筑工程 心理学 数学分析 社会心理学 语言学 哲学 数学 政治 政治学 法学 工程类
作者
Shuo Xiao,Dongqing Zhu,Chaogang Tang,Zubing Huang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 446-461 被引量:2
标识
DOI:10.1007/978-3-031-30672-3_30
摘要

Cross-domain recommendation (CDR) improves recommendation accuracy by transferring knowledge from rich domains to sparse domains, which is a significant advancement in the effort to deal with data sparsity. Existing CDR works, however, still have some challenges, including (1) ignoring the user-item interaction long-tail distribution problem and (2) transferring only the domain-shared feature preferences of common users. In this paper, we propose a CDR framework named joint Cross-Attention Transfer and Contrastive Learning for Cross-Domain Recommendation (CATCL). We first add random uniform noise to the original representation to maximize the mutual information between the original representation and its augmented view, and then pre-train to obtain more uniformly distributed user/item representations, in order to address the issues of data sparsity and popularity bias within intra-domain. In addition, we introduce a cross-attention mechanism for extracting user domain-shared and domain-specific features in order to capture the relevance of user preferences between inter-domain. Then we employ an element-wise attention component that dynamically distributes weights between domain-specific and domain-shared features, allowing different features to exhibit different importance in rich and sparse domains. The final experimental results on three public datasets demonstrate the effectiveness of the proposed framework for many powerful state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
行云终于谁同完成签到,获得积分10
1秒前
2秒前
2秒前
ljscjth完成签到,获得积分10
4秒前
4秒前
秦始皇完成签到,获得积分20
4秒前
5秒前
acommonreader发布了新的文献求助10
5秒前
完美世界应助咩咩羊采纳,获得10
5秒前
沈言应助guo采纳,获得10
6秒前
6秒前
张志迪发布了新的文献求助10
6秒前
6秒前
Justin发布了新的文献求助10
7秒前
7秒前
淡然平蓝发布了新的文献求助10
7秒前
xieqq00完成签到,获得积分10
8秒前
独特乘云发布了新的文献求助10
9秒前
Pweni举报Eva求助涉嫌违规
9秒前
acommonreader完成签到,获得积分10
10秒前
11秒前
caitSith完成签到,获得积分10
11秒前
11秒前
ibigbird发布了新的文献求助10
12秒前
咕咕完成签到,获得积分10
13秒前
所所应助zixian采纳,获得10
14秒前
余白薇发布了新的文献求助10
14秒前
16秒前
CipherSage应助张志迪采纳,获得10
16秒前
123应助加菲丰丰采纳,获得20
16秒前
永远的爱坤完成签到,获得积分10
17秒前
17秒前
小mol仙完成签到,获得积分10
17秒前
CipherSage应助狂野世立采纳,获得10
18秒前
正直草丛完成签到,获得积分10
18秒前
18秒前
18秒前
天真若魔完成签到,获得积分10
19秒前
19秒前
bkagyin应助沉静的八宝粥采纳,获得10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308821
求助须知:如何正确求助?哪些是违规求助? 2942188
关于积分的说明 8507596
捐赠科研通 2617188
什么是DOI,文献DOI怎么找? 1429994
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649186