Fabrication of Bi<sub>2</sub>Te<sub>3</sub> and Sb<sub>2</sub>Te<sub>3</sub> Thermoelectric Thin Films using Radio Frequency Magnetron Sputtering Technique
化学
作者
Nurfarhana Ahmad Musri,Yoganash Putthisigamany,Puvaneswaran Chelvanathan,Norasikin Ahmad Ludin,Nadhrah Md Yatim,Ubaidah Syafiq
Through various studies on thermoelectric (TE) materials, thin film configuration gives superior advantages over conventional bulk TEs, including adaptability to curved and flexible substrates. Several different thin film deposition methods have been explored, yet magnetron sputtering is still favorable due to its high deposition efficiency and scalability. Therefore, this study aims to fabricate a bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) thin film via the radio frequency (RF) magnetron sputtering method. The thin films were deposited on soda lime glass substrates at ambient temperature. The substrates were first washed using water and soap, ultrasonically cleaned with methanol, acetone, ethanol, and deionized water for 10 min, dried with nitrogen gas and hot plate, and finally treated under UV ozone for 10 min to remove residues before the coating process. A sputter target of Bi2Te3 and Sb2Te3 with Argon gas was used, and pre-sputtering was done to clean the target's surface. Then, a few clean substrates were loaded into the sputtering chamber, and the chamber was vacuumed until the pressure reached 2 x 10-5 Torr. The thin films were deposited for 60 min with Argon flow of 4 sccm and RF power at 75 W and 30 W for Bi2Te3 and Sb2Te3, respectively. This method resulted in highly uniform n-type Bi2Te3 and p-type Sb2Te3 thin films.