生物
代谢组学
背景(考古学)
微生物代谢
抗生素耐药性
新陈代谢
计算生物学
微生物学
抗生素
细菌
生物信息学
遗传学
生物化学
古生物学
作者
Jared R. Mayers,Jack Varon,Ruixuan Zhou,Martin Daniel-Ivad,Courtney Beaulieu,Amrisha Bhosle,Nathaniel R. Glasser,F Lichtenauer,Julie Ng,Mayra Pinilla Vera,Curtis Huttenhower,Mark A. Perrella,Clary B. Clish,Sihai Dave Zhao,Rebecca M. Baron,Emily P. Balskus
出处
期刊:Cell
[Elsevier]
日期:2024-06-16
卷期号:187 (15): 4095-4112.e21
被引量:1
标识
DOI:10.1016/j.cell.2024.05.035
摘要
The growth of antimicrobial resistance (AMR) highlights an urgent need to identify bacterial pathogenic functions that may be targets for clinical intervention. Although severe infections profoundly alter host metabolism, prior studies have largely ignored microbial metabolism in this context. Here, we describe an iterative, comparative metabolomics pipeline to uncover microbial metabolic features in the complex setting of a host and apply it to investigate gram-negative bloodstream infection (BSI) in patients. We find elevated levels of bacterially derived acetylated polyamines during BSI and discover the enzyme responsible for their production (SpeG). Blocking SpeG activity reduces bacterial proliferation and slows pathogenesis. Reduction of SpeG activity also enhances bacterial membrane permeability and increases intracellular antibiotic accumulation, allowing us to overcome AMR in culture and in vivo. This study highlights how tools to study pathogen metabolism in the natural context of infection can reveal and prioritize therapeutic strategies for addressing challenging infections.
科研通智能强力驱动
Strongly Powered by AbleSci AI