化学
环己烷
甲苯
氢键
氢
有机化学
高分子化学
分子
作者
Yunbin Li,Hang Chen,Jiali Huang,Hao Zhang,Si Lin,Zi‐Ming Ye,Shengchang Xiang,Banglin Chen,Zhangjing Zhang
摘要
The effective separation of aromatic and aliphatic hydrocarbons remains a notable challenge in the petrochemical industry. Herein, we report a self-healing three-dimensional B ← N-based hydrogen-bonded organic framework (HOF), BN-HOF-1, constructed from discrete B ← N inclusive dimers through weak C–H···F and C–H···N hydrogen-bonding interactions. To make use of the specific recognition of the B ← N inclusive dimers for the toluene molecules and the reversible ad/desorption nature of this novel HOF, BN-HOF-1 can exclusively recognize and separate toluene from the mixtures of toluene-methylcyclohexane, thus generating 99.6% pure toluene from its mixtures after gentle heating, the recorded value among any reported materials for toluene purification. After the toluene molecules were released from the framework, it becomes the condensed BN-HOF-1a, which can be further reused for the highly selective recognition and purification of toluene from its binary mixtures, through the reversible structural recovery back to BN-HOF-1. Single-crystal X-ray diffraction and molecular modeling studies reveal that the high specific toluene recognition is attributed to the complementary electrostatic potential between the host B ← N inclusive dimers and the guest toluene, while the self-healing and recovery nature of this HOF is attributed to weak intermolecular hydrogen-bonding interactions.
科研通智能强力驱动
Strongly Powered by AbleSci AI