Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram

短时傅里叶变换 人工智能 深度学习 计算机科学 卷积神经网络 模式识别(心理学) 光谱图 傅里叶变换 连续小波变换 材料科学 稳健性(进化) 小波变换 小波 离散小波变换 傅里叶分析 数学 数学分析 化学 基因 生物化学
作者
Jae-Ho Sim,Jengsu Yoo,Myung Lae Lee,Sang Heon Han,Seok Kil Han,Jeong Yu Lee,Sung Won Yi,Jin Nam,Dong Soo Kim,Yong Suk Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (20): 25825-25835 被引量:2
标识
DOI:10.1021/acsami.4c03675
摘要

Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真雁梅完成签到 ,获得积分10
1秒前
大模型应助个性的冰颜采纳,获得10
1秒前
bkagyin应助ZM采纳,获得10
1秒前
郭梦娇发布了新的文献求助10
2秒前
3秒前
科研通AI6应助冰水混合物采纳,获得10
4秒前
隐形曼青应助八二力采纳,获得10
4秒前
5秒前
6秒前
6秒前
shar2完成签到,获得积分10
7秒前
无辜紫菜完成签到,获得积分10
7秒前
算命先生发布了新的文献求助10
8秒前
8秒前
睡个大觉完成签到,获得积分10
9秒前
周勇峰完成签到,获得积分20
10秒前
Lucas应助小兔子乖乖采纳,获得30
10秒前
研友_85rJEL完成签到 ,获得积分10
10秒前
科研通AI6应助超帅的冷菱采纳,获得10
11秒前
guo发布了新的文献求助10
11秒前
lily完成签到,获得积分10
11秒前
ZS发布了新的文献求助10
11秒前
失眠的访枫完成签到 ,获得积分10
12秒前
12秒前
12秒前
科目三应助柚子采纳,获得10
13秒前
___发布了新的文献求助10
14秒前
14秒前
zxw发布了新的文献求助10
15秒前
HaHa007发布了新的文献求助10
16秒前
SYxYouth完成签到,获得积分10
17秒前
Yh_alive完成签到,获得积分10
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
刘显波完成签到,获得积分10
19秒前
ding应助我爱科研采纳,获得10
19秒前
番茄绑了鸡蛋应助周勇峰采纳,获得10
20秒前
观妙散人完成签到,获得积分10
20秒前
NexusExplorer应助雷霆嘎巴采纳,获得30
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656240
求助须知:如何正确求助?哪些是违规求助? 4802386
关于积分的说明 15075189
捐赠科研通 4814529
什么是DOI,文献DOI怎么找? 2575798
邀请新用户注册赠送积分活动 1531163
关于科研通互助平台的介绍 1489741