Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram

短时傅里叶变换 人工智能 深度学习 计算机科学 卷积神经网络 模式识别(心理学) 光谱图 傅里叶变换 连续小波变换 材料科学 稳健性(进化) 小波变换 小波 离散小波变换 傅里叶分析 数学 数学分析 生物化学 化学 基因
作者
Jae-Ho Sim,Jengsu Yoo,Myung Lae Lee,Sang Heon Han,Seok Kil Han,Jeong Yu Lee,Sung Won Yi,Jin Nam,Dong Soo Kim,Yong Suk Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (20): 25825-25835 被引量:2
标识
DOI:10.1021/acsami.4c03675
摘要

Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QiongYin_123发布了新的文献求助30
刚刚
搜集达人应助adam采纳,获得10
2秒前
行将就木子完成签到,获得积分10
3秒前
酷炫的之柔完成签到,获得积分10
3秒前
yy完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
kkk发布了新的文献求助10
7秒前
凉茶完成签到,获得积分10
9秒前
壮观时光发布了新的文献求助10
11秒前
13秒前
13秒前
肃肃其羽完成签到 ,获得积分10
13秒前
17秒前
miku完成签到 ,获得积分10
17秒前
风筝完成签到,获得积分10
19秒前
19秒前
19秒前
福轩完成签到,获得积分10
19秒前
莉莉斯完成签到 ,获得积分10
19秒前
科研通AI2S应助王富贵采纳,获得10
19秒前
Ricardo完成签到 ,获得积分10
21秒前
21秒前
22秒前
酷波er应助你吼采纳,获得10
24秒前
远处的立交完成签到,获得积分10
24秒前
鹿茸与共发布了新的文献求助10
25秒前
sean118完成签到 ,获得积分10
25秒前
Maoxian发布了新的文献求助10
26秒前
27秒前
lokelnai67完成签到,获得积分10
27秒前
27秒前
28秒前
29秒前
小杨完成签到,获得积分10
29秒前
Owen应助李霞采纳,获得10
29秒前
CipherSage应助科研小贩采纳,获得10
30秒前
殊桐完成签到,获得积分10
30秒前
拾陆发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998752
求助须知:如何正确求助?哪些是违规求助? 3538216
关于积分的说明 11273702
捐赠科研通 3277200
什么是DOI,文献DOI怎么找? 1807436
邀请新用户注册赠送积分活动 883893
科研通“疑难数据库(出版商)”最低求助积分说明 810075