Deep Learning Model for Cosmetic Gel Classification Based on a Short-Time Fourier Transform and Spectrogram

短时傅里叶变换 人工智能 深度学习 计算机科学 卷积神经网络 模式识别(心理学) 光谱图 傅里叶变换 连续小波变换 材料科学 稳健性(进化) 小波变换 小波 离散小波变换 傅里叶分析 数学 数学分析 化学 基因 生物化学
作者
Jae-Ho Sim,Jengsu Yoo,Myung Lae Lee,Sang Heon Han,Seok Kil Han,Jeong Yu Lee,Sung Won Yi,Jin Nam,Dong Soo Kim,Yong Suk Yang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (20): 25825-25835 被引量:2
标识
DOI:10.1021/acsami.4c03675
摘要

Cosmetics and topical medications, such as gels, foams, creams, and lotions, are viscoelastic substances that are applied to the skin or mucous membranes. The human perception of these materials is complex and involves multiple sensory modalities. Traditional panel-based sensory evaluations have limitations due to individual differences in sensory receptors and factors such as age, race, and gender. Therefore, this study proposes a deep-learning-based method for systematically analyzing and effectively identifying the physical properties of cosmetic gels. Time-series friction signals generated by rubbing the gels were measured. These signals were preprocessed through short-time Fourier transform (STFT) and continuous wavelet transform (CWT), respectively, and the frequency factors that change over time were distinguished and analyzed. The deep learning model employed a ResNet-based convolution neural network (CNN) structure with optimization achieved through a learning rate scheduler. The optimized STFT-based 2D CNN model outperforms the CWT-based 2D and 1D CNN models. The optimized STFT-based 2D CNN model also demonstrated robustness and reliability through k-fold cross-validation. This study suggests the potential for an innovative approach to replace traditional expert panel evaluations and objectively assess the user experience of cosmetics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
实验好难应助蘸糖冰美式采纳,获得10
1秒前
iu完成签到,获得积分10
1秒前
桀桀桀完成签到,获得积分10
1秒前
吴兰田发布了新的文献求助10
5秒前
145完成签到,获得积分10
6秒前
6秒前
9秒前
11秒前
12秒前
KKZNB完成签到,获得积分10
12秒前
13秒前
可靠的大侠完成签到 ,获得积分10
14秒前
崔双艳完成签到,获得积分10
16秒前
Xorgan发布了新的文献求助20
16秒前
along发布了新的文献求助10
16秒前
阿文在读研完成签到,获得积分10
17秒前
wshwx完成签到,获得积分10
17秒前
19秒前
19秒前
llflame发布了新的文献求助10
21秒前
mysci完成签到,获得积分10
21秒前
22秒前
甜橙汁发布了新的文献求助10
24秒前
打打应助CR采纳,获得30
24秒前
24秒前
zjj发布了新的文献求助10
27秒前
小二郎应助潘辉采纳,获得10
28秒前
1111完成签到 ,获得积分10
28秒前
田様应助小小冰采纳,获得10
29秒前
时丶倾完成签到,获得积分10
29秒前
30秒前
31秒前
羊羊羊发布了新的文献求助10
36秒前
37秒前
traveller完成签到,获得积分10
37秒前
顺带急完成签到 ,获得积分10
37秒前
陈卓完成签到,获得积分10
39秒前
40秒前
41秒前
CR发布了新的文献求助30
43秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737341
求助须知:如何正确求助?哪些是违规求助? 3281206
关于积分的说明 10023621
捐赠科研通 2997922
什么是DOI,文献DOI怎么找? 1644880
邀请新用户注册赠送积分活动 782237
科研通“疑难数据库(出版商)”最低求助积分说明 749762