PASK-Net: A Hybrid Network for Polyps Image Segmentation

网(多面体) 图像(数学) 人工智能 计算机科学 图像分割 计算机视觉 模式识别(心理学) 数学 几何学
作者
Yankun Lv,LU Guo-hao,Yan Li
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4211010/v1
摘要

Abstract Accurate segmentation of polyps is crucial in the field of medical image recognition. Attention mechanisms have been widely applied in medical image segmentation, but attention mechanisms implemented by convolution are limited in capturing multi-scale information due to the constraints of convolution kernel sizes. This linear aggregation method restricts the network's adaptability to various complex situations and has limitations in handling multi-scale information. Therefore, this paper proposes PASK-Net, which performs serial computations in both channel and spatial dimensions. In the channel dimension, a nonlinear approach is introduced to achieve neuron-adaptive receptive field sizes, addressing the problem of fixed convolutional processing range in attention mechanisms that hinders effective acquisition of multi-scale information. Meanwhile, in the spatial dimension, Channel-Prioritized Convolutional Attention (CPCA) is introduced to enhance the network's feature representation capability by aggregating multi-scale information from different-sized convolutional kernel branches, while ensuring computational efficiency. Comparative experiments on the Kvasir dataset demonstrate that, compared to other networks, the PASK module performs well on six evaluation metrics including Dice and IOU, achieving a Dice value of 87.54% and an IOU value of 80.6%, effectively improving the accuracy of polyp segmentation. Results from ablation experiments also validate the effectiveness of the module. The codes are available at https://github.com/LvYamKun/PASK-Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CR7应助Growth采纳,获得20
1秒前
2秒前
allshestar完成签到 ,获得积分0
2秒前
2秒前
鹤昀完成签到 ,获得积分10
2秒前
JIASHOUSHOU完成签到,获得积分10
2秒前
Jasper应助dan1029采纳,获得10
3秒前
郭志康完成签到,获得积分10
3秒前
3秒前
3秒前
阡陌完成签到,获得积分10
3秒前
Lee完成签到,获得积分10
3秒前
Refuel完成签到,获得积分10
4秒前
liuz完成签到,获得积分0
4秒前
ydxhh发布了新的文献求助10
4秒前
Owen应助YMAO采纳,获得10
4秒前
SciGPT应助shirely采纳,获得10
5秒前
525完成签到,获得积分10
5秒前
成就的靖琪完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
独特秋双发布了新的文献求助10
6秒前
Sherlock完成签到,获得积分10
6秒前
6秒前
明亮的柚子完成签到,获得积分10
7秒前
Asxx完成签到,获得积分10
7秒前
7秒前
7秒前
LAMAMAX发布了新的文献求助10
7秒前
黑炭球完成签到,获得积分10
8秒前
岳莹晓完成签到 ,获得积分10
8秒前
Nniu完成签到,获得积分10
8秒前
linsihui发布了新的文献求助10
8秒前
DanaLin完成签到,获得积分10
8秒前
高级后勤完成签到,获得积分10
8秒前
huihui发布了新的文献求助20
9秒前
neo完成签到,获得积分10
9秒前
owlhealth完成签到,获得积分10
9秒前
英勇笑萍完成签到,获得积分10
9秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
Psychology for Teachers 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4598793
求助须知:如何正确求助?哪些是违规求助? 4009629
关于积分的说明 12412676
捐赠科研通 3689263
什么是DOI,文献DOI怎么找? 2033740
邀请新用户注册赠送积分活动 1066866
科研通“疑难数据库(出版商)”最低求助积分说明 951962