PASK-Net: A Hybrid Network for Polyps Image Segmentation

网(多面体) 图像(数学) 人工智能 计算机科学 图像分割 计算机视觉 模式识别(心理学) 数学 几何学
作者
Yankun Lv,LU Guo-hao,Yan Li
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4211010/v1
摘要

Abstract Accurate segmentation of polyps is crucial in the field of medical image recognition. Attention mechanisms have been widely applied in medical image segmentation, but attention mechanisms implemented by convolution are limited in capturing multi-scale information due to the constraints of convolution kernel sizes. This linear aggregation method restricts the network's adaptability to various complex situations and has limitations in handling multi-scale information. Therefore, this paper proposes PASK-Net, which performs serial computations in both channel and spatial dimensions. In the channel dimension, a nonlinear approach is introduced to achieve neuron-adaptive receptive field sizes, addressing the problem of fixed convolutional processing range in attention mechanisms that hinders effective acquisition of multi-scale information. Meanwhile, in the spatial dimension, Channel-Prioritized Convolutional Attention (CPCA) is introduced to enhance the network's feature representation capability by aggregating multi-scale information from different-sized convolutional kernel branches, while ensuring computational efficiency. Comparative experiments on the Kvasir dataset demonstrate that, compared to other networks, the PASK module performs well on six evaluation metrics including Dice and IOU, achieving a Dice value of 87.54% and an IOU value of 80.6%, effectively improving the accuracy of polyp segmentation. Results from ablation experiments also validate the effectiveness of the module. The codes are available at https://github.com/LvYamKun/PASK-Net
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王好饿完成签到,获得积分10
1秒前
2秒前
我是老大应助东尧采纳,获得10
2秒前
EtAior给EtAior的求助进行了留言
3秒前
3秒前
平常的毛豆应助Oveja采纳,获得30
4秒前
华仔应助will采纳,获得10
4秒前
5秒前
薇拉发布了新的文献求助10
6秒前
YA应助羊没拿采纳,获得10
6秒前
xiaoyujian完成签到,获得积分20
6秒前
Chang发布了新的文献求助10
6秒前
个性的紫菜应助lmx采纳,获得30
6秒前
整齐的井完成签到 ,获得积分10
9秒前
9秒前
尺八发布了新的文献求助10
9秒前
六六关注了科研通微信公众号
9秒前
CipherSage应助稳重的落雁采纳,获得30
9秒前
鹦鹉完成签到,获得积分20
9秒前
清秀的世界完成签到,获得积分10
9秒前
容檀发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Oveja完成签到,获得积分20
12秒前
12秒前
kndfsfmf发布了新的文献求助10
13秒前
LYDZ2发布了新的文献求助10
13秒前
可爱的函函应助余问芙采纳,获得10
14秒前
美好斓发布了新的文献求助10
14秒前
鹦鹉发布了新的文献求助10
14秒前
16秒前
吴彦祖发布了新的文献求助10
16秒前
18秒前
18秒前
18秒前
18秒前
19秒前
19秒前
20秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 870
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Development of general formulas for bolted flanges, by E.O. Waters [and others] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3255241
求助须知:如何正确求助?哪些是违规求助? 2897655
关于积分的说明 8297443
捐赠科研通 2566693
什么是DOI,文献DOI怎么找? 1393842
科研通“疑难数据库(出版商)”最低求助积分说明 652658
邀请新用户注册赠送积分活动 630306