A medical report generation method integrating teacher–student model and encoder–decoder network

计算机科学 编码器 人工智能 算法 实时计算 操作系统
作者
Shujun Zhang,Qi Han,Jinsong Li,Yukang Sun,Yuhua Qin
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:94: 106251-106251
标识
DOI:10.1016/j.bspc.2024.106251
摘要

The automatic medical report generation task can reduce the burden of radiologists and improve the intelligence of auxiliary diagnosis, but still faces the following challenges: (1) The small lesions are easily overlooked, leading to loss of crucial information in the report and low accuracy; (2) The generated long text reports often suffer from jumbled word order and sentence order, resulting in poor fluency. Through simulation of the cognitive principle of professional physicians during their training and work, this paper put forward a medical report generation method integrating a teacher–student model with an encoder–decoder network. The core idea is to propose a cross-modal teacher (text)-student (image) model, adopting different supervision methods for different stages of report generation to improve the model's learning performance. A semantic space alignment mechanism is designed to enhance the cross-modal feature matching ability by contrasting the encoding methods of different modalities through adversarial learning, gradually optimizing and capturing the critical information. A layer-supervised decoder based on the Transformer hierarchical structure is proposed with the teacher model guiding the student model to decode layer by layer to increase the fluency of report generation. Comparative experiments are conducted on IU-X-ray and MIMIC-CXR datasets with various other methods, and the results show that the proposed method can effectively improve the quality of generated reports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雷雷发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
4秒前
酷酷薯片发布了新的文献求助10
6秒前
谨慎隶关注了科研通微信公众号
7秒前
YXR发布了新的文献求助10
7秒前
Araa完成签到,获得积分10
9秒前
无名氏发布了新的文献求助30
9秒前
传奇3应助月月采纳,获得10
9秒前
cxh发布了新的文献求助10
9秒前
10秒前
luoshi完成签到,获得积分10
10秒前
quhaolin发布了新的文献求助10
12秒前
赘婿应助洗了蒜了采纳,获得10
12秒前
hoshi发布了新的文献求助10
12秒前
颂安应助平淡的鸿煊采纳,获得10
12秒前
bkagyin应助曾经阁采纳,获得10
12秒前
13秒前
心心完成签到,获得积分10
13秒前
13秒前
Araa发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
卡卡光波完成签到,获得积分10
16秒前
16秒前
苦瓜发布了新的文献求助50
18秒前
小砖家ing发布了新的文献求助150
18秒前
yuanle发布了新的文献求助10
19秒前
小吴发布了新的文献求助10
20秒前
迅速煎蛋发布了新的文献求助30
20秒前
Dsunflower完成签到 ,获得积分10
21秒前
上官若男应助大鱼采纳,获得10
21秒前
赘婿应助古德方采纳,获得10
22秒前
22秒前
23秒前
夏明明发布了新的文献求助10
24秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252053
求助须知:如何正确求助?哪些是违规求助? 2894899
关于积分的说明 8283940
捐赠科研通 2563549
什么是DOI,文献DOI怎么找? 1391730
科研通“疑难数据库(出版商)”最低求助积分说明 651925
邀请新用户注册赠送积分活动 628894