A medical report generation method integrating teacher–student model and encoder–decoder network

计算机科学 编码器 人工智能 算法 实时计算 操作系统
作者
Shujun Zhang,Qi Han,Jinsong Li,Yukang Sun,Yuhua Qin
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:94: 106251-106251
标识
DOI:10.1016/j.bspc.2024.106251
摘要

The automatic medical report generation task can reduce the burden of radiologists and improve the intelligence of auxiliary diagnosis, but still faces the following challenges: (1) The small lesions are easily overlooked, leading to loss of crucial information in the report and low accuracy; (2) The generated long text reports often suffer from jumbled word order and sentence order, resulting in poor fluency. Through simulation of the cognitive principle of professional physicians during their training and work, this paper put forward a medical report generation method integrating a teacher–student model with an encoder–decoder network. The core idea is to propose a cross-modal teacher (text)-student (image) model, adopting different supervision methods for different stages of report generation to improve the model's learning performance. A semantic space alignment mechanism is designed to enhance the cross-modal feature matching ability by contrasting the encoding methods of different modalities through adversarial learning, gradually optimizing and capturing the critical information. A layer-supervised decoder based on the Transformer hierarchical structure is proposed with the teacher model guiding the student model to decode layer by layer to increase the fluency of report generation. Comparative experiments are conducted on IU-X-ray and MIMIC-CXR datasets with various other methods, and the results show that the proposed method can effectively improve the quality of generated reports.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
殷勤的哈密瓜完成签到,获得积分10
1秒前
zxy完成签到,获得积分10
1秒前
2秒前
Augusterny完成签到 ,获得积分10
2秒前
kchrisuzad完成签到,获得积分10
4秒前
5秒前
5秒前
丘比特应助许子健采纳,获得30
6秒前
梧桐完成签到,获得积分10
7秒前
T拐拐发布了新的文献求助10
7秒前
liuyc完成签到 ,获得积分10
8秒前
QIUQIU0916完成签到 ,获得积分10
8秒前
kunkun完成签到,获得积分10
9秒前
PANYW完成签到,获得积分10
11秒前
11秒前
杨家辉完成签到,获得积分10
12秒前
墨染书香发布了新的文献求助10
12秒前
12秒前
超级友蕊发布了新的文献求助10
12秒前
18秒前
18秒前
蜜桃小丸子完成签到 ,获得积分10
20秒前
21秒前
JSM完成签到,获得积分10
22秒前
丰富烧鹅完成签到,获得积分10
23秒前
25秒前
25秒前
江雯君发布了新的文献求助10
25秒前
26秒前
28秒前
28秒前
28秒前
AQI完成签到,获得积分10
29秒前
小凡完成签到,获得积分10
29秒前
yan发布了新的文献求助10
31秒前
31秒前
32秒前
丰那个丰发布了新的文献求助10
32秒前
Coraline应助许子健采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966430
求助须知:如何正确求助?哪些是违规求助? 3511854
关于积分的说明 11160310
捐赠科研通 3246555
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388