反推
控制理论(社会学)
弹道
迭代学习控制
趋同(经济学)
跟踪误差
李雅普诺夫函数
计算机科学
奇点
自适应控制
跟踪(教育)
数学
非线性系统
控制(管理)
人工智能
心理学
数学分析
教育学
物理
天文
量子力学
经济
经济增长
作者
Huihui Shi,Qiang Chen,Yaqian Li,Xiongxiong He
摘要
Summary The initial state inconsistency and iteration‐varying trajectory problems are considered in adaptive iterative learning control (AILC) to enhance the tracking performance of the non‐strict feedback systems with unknown input nonlinearities. Through constructing an error reference trajectory independence of the reference signal, the restrictions on the initial condition and reference trajectory are both relaxed. Subsequently, a backstepping‐based AILC methodology is systematically presented to ensure that the error reference trajectory can be followed by the actual tracking error. Integral Lyapunov functions are employed to design the recursive controllers, avoiding potential singularity problems resulting from the differentiation of gain functions. Rigorous analysis is provided without imposing constraints on the control gain functions to demonstrate tracking error convergence. Numerical simulations are included to illustrate the efficacy of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI