Partially Specified Spatial Autoregressive Model with Artificial Neural Network

自回归模型 人工神经网络 非线性自回归外生模型 星型 计算机科学 SETAR公司 人工智能 计量经济学 自回归积分移动平均 数学 机器学习 时间序列
作者
Wenqian Wang,Beth Andrews
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.1801.07822
摘要

Spatial autoregressive model, introduced by Clif and Ord in 1970s has been widely applied in many areas of science and econometrics such as regional economics, public finance, political sciences, agricultural economics, environmental studies and transportation analyses. As information technology grows rapidly, observations are seldom independent from others so a space autoregressive models can take this dependence into account and draw more reliable conclusions between covariates and the target variable itself. Based on the classical spatial model, Su and Jin proposed a semi-parametric model named as partially specified spatial autoregressive model (PSAR) to allow for more flexibility in modeling. And to estimate this nonparametric component, we use the neural network model which adds more flexibility to the classical model and allows for variations in the choice of activation functions according to different types of data. This paper extends an artificial neural network model to a partially specified space autoregressive model and proposes maximum likelihood estimators instead of quasi-maximum likelihood estimates. We establish the consistency and asymptotic normality of the estimators in this model. These results are obtained under some standard conditions in spatial models as well as neural network models. To illustrate, we investigate the quality of the normal approximation for finite samples by means of numerical simulation studies with three common choices of error distributions (standard normal, student-t distribution and the Laplace distribution). We apply our proposed model to a soil-water tension problem and a criminal study in Chicago. The results showed that our model can capture the spatial dependence between units as well as the unknown correlation structure between the target variable and covariates.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助姜建正采纳,获得10
1秒前
compass发布了新的文献求助30
1秒前
Eden发布了新的文献求助30
1秒前
冷酷初南发布了新的文献求助10
1秒前
昔时旧日发布了新的文献求助10
1秒前
脑洞疼应助zzz采纳,获得10
3秒前
luo发布了新的文献求助10
3秒前
4秒前
jsxxdr发布了新的文献求助10
4秒前
4秒前
学术人发布了新的文献求助10
4秒前
Hello应助阔达月亮采纳,获得10
4秒前
吕布完成签到,获得积分10
5秒前
奋斗尔安应助哈哈哈采纳,获得10
5秒前
领导范儿应助今天开心吗采纳,获得10
6秒前
风筝鱼发布了新的文献求助10
7秒前
8秒前
9秒前
浮生发布了新的文献求助10
9秒前
jsxxdr完成签到,获得积分10
9秒前
Johnpick应助呆小仙采纳,获得10
9秒前
小马甲应助动听的静槐采纳,获得10
10秒前
SYLH应助曲奇采纳,获得10
10秒前
trocars完成签到,获得积分20
10秒前
Eden完成签到,获得积分10
11秒前
梦在彼岸完成签到,获得积分10
11秒前
自觉的曼梅完成签到,获得积分10
11秒前
cannon8发布了新的文献求助30
12秒前
13秒前
任性绝悟完成签到,获得积分10
13秒前
华仔应助无昵称采纳,获得10
14秒前
14秒前
15秒前
爆米花应助caoyy采纳,获得10
15秒前
脑洞疼应助YUMI采纳,获得10
16秒前
酷酷语兰发布了新的文献求助10
16秒前
17秒前
compass完成签到,获得积分10
17秒前
汉堡包应助生动的鹰采纳,获得10
17秒前
丘比特应助maxspecter采纳,获得30
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3547087
求助须知:如何正确求助?哪些是违规求助? 3124191
关于积分的说明 9358008
捐赠科研通 2822719
什么是DOI,文献DOI怎么找? 1551643
邀请新用户注册赠送积分活动 723580
科研通“疑难数据库(出版商)”最低求助积分说明 713825