Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li+ Mobility of Li3PS4: Insights from First-Principles Calculations

材料科学 电化学窗口 离子电导率 热力学 电解质 快离子导体 扩散 相(物质) 电导率 纳米孔 电化学 锂(药物) 离子键合 化学物理 物理化学 离子 纳米技术 电极 化学 内分泌学 物理 医学 有机化学
作者
Yanhan Yang,Wu Qu,Yanhua Cui,Yongchang Chen,Siqi Shi,Ru‐Zhi Wang,Hui Yan
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:8 (38): 25229-25242 被引量:123
标识
DOI:10.1021/acsami.6b06754
摘要

The improved ionic conductivity (1.64 × 10(-4) S cm(-1) at room temperature) and excellent electrochemical stability of nanoporous β-Li3PS4 make it one of the promising candidates for rechargeable all-solid-state lithium-ion battery electrolytes. Here, elastic properties, defect thermodynamics, phase diagram, and Li(+) migration mechanism of Li3PS4 (both γ and β phases) are examined via the first-principles calculations. Results indicate that both γ- and β-Li3PS4 phases are ductile while γ-Li3PS4 is harder under volume change and shear stress than β-Li3PS4. The electrochemical window of Li3PS4 ranges from 0.6 to 3.7 V, and thus the experimentally excellent stability (>5 V) is proposed due to the passivation phenomenon. The dominant diffusion carrier type in Li3PS4 is identified over its electrochemical window. In γ-Li3PS4 the direct-hopping of Lii(+) along the [001] is energetically more favorable than other diffusion processes, whereas in β-Li3PS4 the knock-off diffusion of Lii(+) along the [010] has the lowest migration barrier. The ionic conductivity is evaluated from the concentration and the mobility calculations using the Nernst-Einstein relationship and compared with the available experimental results. According to our calculated results, the Li(+) prefers to transport along the [010] direction. It is suggested that the enhanced ionic conductivity in nanostructured β-Li3PS4 is due to the larger possibility of contiguous (010) planes provided by larger nanoporous β-Li3PS4 particles. By a series of motivated and closely linked calculations, we try to provide a portable method, by which researchers could gain insights into the physicochemical properties of solid electrolyte.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助JIA采纳,获得30
2秒前
学术小王子完成签到,获得积分10
2秒前
zyj发布了新的文献求助10
5秒前
天明完成签到,获得积分10
8秒前
9秒前
10秒前
Akim应助飞翔的企鹅采纳,获得30
11秒前
收拾收拾发布了新的文献求助30
11秒前
活力安南完成签到,获得积分10
14秒前
robinhood完成签到,获得积分10
14秒前
过时的映雁完成签到,获得积分10
14秒前
专注的班发布了新的文献求助10
15秒前
田様应助276868sxzz采纳,获得10
16秒前
first发布了新的文献求助10
16秒前
李健的粉丝团团长应助zyj采纳,获得10
16秒前
科研通AI5应助安殿夏采纳,获得10
18秒前
潘宋完成签到,获得积分10
18秒前
研友_LX66qZ完成签到,获得积分10
18秒前
HMONEY应助街霸采纳,获得10
18秒前
19秒前
20秒前
20秒前
Nzee完成签到,获得积分10
20秒前
JIA完成签到,获得积分20
21秒前
21秒前
华仔应助mice33采纳,获得10
21秒前
共享精神应助高大雁兰采纳,获得10
22秒前
CodeCraft应助爬不起来采纳,获得10
23秒前
yy应助简易采纳,获得10
25秒前
丘比特应助nnn采纳,获得10
26秒前
first完成签到,获得积分10
27秒前
JIA发布了新的文献求助30
27秒前
wzz完成签到,获得积分10
27秒前
28秒前
28秒前
29秒前
压线大王完成签到 ,获得积分10
29秒前
31秒前
嘚嘚发布了新的文献求助10
31秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740628
求助须知:如何正确求助?哪些是违规求助? 3283472
关于积分的说明 10035486
捐赠科研通 3000287
什么是DOI,文献DOI怎么找? 1646438
邀请新用户注册赠送积分活动 783615
科研通“疑难数据库(出版商)”最低求助积分说明 750411