A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information

计算机科学 变压器 人工智能 卷积神经网络 语言模型 编码器 自然语言处理 嵌入 特征学习 背景(考古学) 深度学习 模式识别(心理学) 生物 操作系统 物理 古生物学 量子力学 电压
作者
Nguyen Quoc Khanh Le,Quang-Thai Ho,Trinh Trung Duong Nguyen,Yu-Yen Ou
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:71
标识
DOI:10.1093/bib/bbab005
摘要

Recently, language representation models have drawn a lot of attention in the natural language processing field due to their remarkable results. Among them, bidirectional encoder representations from transformers (BERT) has proven to be a simple, yet powerful language model that achieved novel state-of-the-art performance. BERT adopted the concept of contextualized word embedding to capture the semantics and context of the words in which they appeared. In this study, we present a novel technique by incorporating BERT-based multilingual model in bioinformatics to represent the information of DNA sequences. We treated DNA sequences as natural sentences and then used BERT models to transform them into fixed-length numerical matrices. As a case study, we applied our method to DNA enhancer prediction, which is a well-known and challenging problem in this field. We then observed that our BERT-based features improved more than 5-10% in terms of sensitivity, specificity, accuracy and Matthews correlation coefficient compared to the current state-of-the-art features in bioinformatics. Moreover, advanced experiments show that deep learning (as represented by 2D convolutional neural networks; CNN) holds potential in learning BERT features better than other traditional machine learning techniques. In conclusion, we suggest that BERT and 2D CNNs could open a new avenue in biological modeling using sequence information.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
水牛完成签到,获得积分10
刚刚
1秒前
听话的数据线完成签到,获得积分10
1秒前
沈言应助皮凡采纳,获得10
1秒前
2秒前
香蕉觅云应助研友_n2wElZ采纳,获得10
2秒前
笨笨发布了新的文献求助10
2秒前
TMU给TMU的求助进行了留言
3秒前
4秒前
桐桐应助xiaooooo采纳,获得10
5秒前
5秒前
酷波er应助听话的数据线采纳,获得10
6秒前
7秒前
爆米花应助热心初阳采纳,获得10
7秒前
lalala应助典雅的俊驰采纳,获得10
7秒前
缓慢平蓝发布了新的文献求助20
7秒前
郭志强发布了新的文献求助10
8秒前
8秒前
英姑应助周星星采纳,获得10
8秒前
水牛发布了新的文献求助20
8秒前
无花果应助Liuliu采纳,获得10
9秒前
orixero应助山复尔尔采纳,获得10
9秒前
Cml完成签到,获得积分20
9秒前
10秒前
月亮发布了新的文献求助10
10秒前
酷波er应助风雨采纳,获得10
11秒前
爆米花应助积极的小馒头采纳,获得10
11秒前
充电宝应助一谩采纳,获得10
11秒前
liwai发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
缓慢平蓝完成签到,获得积分10
13秒前
14秒前
14秒前
895_应助asdzzc采纳,获得10
14秒前
马甲完成签到,获得积分10
15秒前
ding5完成签到,获得积分10
15秒前
16秒前
lme完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309005
求助须知:如何正确求助?哪些是违规求助? 2942374
关于积分的说明 8508619
捐赠科研通 2617432
什么是DOI,文献DOI怎么找? 1430073
科研通“疑难数据库(出版商)”最低求助积分说明 664018
邀请新用户注册赠送积分活动 649234