A computer vision approach to identifying the manufacturer and model of anterior cervical spinal hardware

医学 颈椎前路椎间盘切除融合术 神经外科 人工智能 外科 计算机科学 颈椎
作者
Kevin T. Huang,Michael A. Silva,Alfred P. See,Kyle Wu,Troy Gallerani,Hasan A. Zaidi,Yi Lu,H John,Michael W. Groff,Omar Arnaout
出处
期刊:Journal of neurosurgery [Journal of Neurosurgery Publishing Group]
卷期号:31 (6): 844-850 被引量:10
标识
DOI:10.3171/2019.6.spine19463
摘要

OBJECTIVE Recent advances in computer vision have revolutionized many aspects of society but have yet to find significant penetrance in neurosurgery. One proposed use for this technology is to aid in the identification of implanted spinal hardware. In revision operations, knowing the manufacturer and model of previously implanted fusion systems upfront can facilitate a faster and safer procedure, but this information is frequently unavailable or incomplete. The authors present one approach for the automated, high-accuracy classification of anterior cervical hardware fusion systems using computer vision. METHODS Patient records were searched for those who underwent anterior-posterior (AP) cervical radiography following anterior cervical discectomy and fusion (ACDF) at the authors’ institution over a 10-year period (2008–2018). These images were then cropped and windowed to include just the cervical plating system. Images were then labeled with the appropriate manufacturer and system according to the operative record. A computer vision classifier was then constructed using the bag-of-visual-words technique and KAZE feature detection. Accuracy and validity were tested using an 80%/20% training/testing pseudorandom split over 100 iterations. RESULTS A total of 321 total images were isolated containing 9 different ACDF systems from 5 different companies. The correct system was identified as the top choice in 91.5% ± 3.8% of the cases and one of the top 2 or 3 choices in 97.1% ± 2.0% and 98.4 ± 13% of the cases, respectively. Performance persisted despite the inclusion of variable sizes of hardware (i.e., 1-level, 2-level, and 3-level plates). Stratification by the size of hardware did not improve performance. CONCLUSIONS A computer vision algorithm was trained to classify at least 9 different types of anterior cervical fusion systems using relatively sparse data sets and was demonstrated to perform with high accuracy. This represents one of many potential clinical applications of machine learning and computer vision in neurosurgical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李子木发布了新的文献求助10
刚刚
拂袖完成签到,获得积分20
刚刚
研友_nvN12n完成签到,获得积分10
1秒前
1秒前
1秒前
3秒前
HCT发布了新的文献求助10
3秒前
3秒前
研友_nvN12n发布了新的文献求助10
4秒前
黄多多发布了新的文献求助10
4秒前
5秒前
6秒前
7秒前
北林关注了科研通微信公众号
8秒前
清秀的忆秋完成签到,获得积分20
8秒前
9秒前
顾矜应助yk123采纳,获得10
9秒前
11秒前
12秒前
12秒前
swagger发布了新的文献求助10
12秒前
草莓发布了新的文献求助10
12秒前
科研通AI5应助绿色心情采纳,获得10
13秒前
14秒前
茄酱完成签到,获得积分10
14秒前
领导范儿应助山月鹿采纳,获得10
14秒前
ST发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
18秒前
北林发布了新的文献求助10
18秒前
乐乐应助光亮元枫采纳,获得10
19秒前
19秒前
19秒前
lily发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553933
求助须知:如何正确求助?哪些是违规求助? 3129728
关于积分的说明 9384042
捐赠科研通 2828848
什么是DOI,文献DOI怎么找? 1555246
邀请新用户注册赠送积分活动 725940
科研通“疑难数据库(出版商)”最低求助积分说明 715331