Clinicogenomic Analysis of FGFR2-Rearranged Cholangiocarcinoma Identifies Correlates of Response and Mechanisms of Resistance to Pemigatinib

生物 仿形(计算机编程) 拷贝数变化 计算生物学 基因 临床试验 基因表达谱 生物信息学 癌症研究 遗传学 基因组 基因表达 计算机科学 操作系统
作者
Ian M. Silverman,Antoine Hollebecque,Luc Friboulet,Sherry Owens,Robert Newton,Hui‐Ling Zhen,Luis Féliz,Camilla Zecchetto,Davide Melisi,Timothy C. Burn
出处
期刊:Cancer Discovery [American Association for Cancer Research]
卷期号:11 (2): 326-339 被引量:201
标识
DOI:10.1158/2159-8290.cd-20-0766
摘要

Pemigatinib, a selective FGFR1-3 inhibitor, has demonstrated antitumor activity in FIGHT-202, a phase II study in patients with cholangiocarcinoma harboring FGFR2 fusions/rearrangements, and has gained regulatory approval in the United States. Eligibility for FIGHT-202 was assessed using genomic profiling; here, these data were utilized to characterize the genomic landscape of cholangiocarcinoma and to uncover unique molecular features of patients harboring FGFR2 rearrangements. The results highlight the high percentage of patients with cholangiocarcinoma harboring potentially actionable genomic alterations and the diversity in gene partners that rearrange with FGFR2. Clinicogenomic analysis of pemigatinib-treated patients identified mechanisms of primary and acquired resistance. Genomic subsets of patients with other potentially actionable FGF/FGFR alterations were also identified. Our study provides a framework for molecularly guided clinical trials and underscores the importance of genomic profiling to enable a deeper understanding of the molecular basis for response and nonresponse to targeted therapy. SIGNIFICANCE: We utilized genomic profiling data from FIGHT-202 to gain insights into the genomic landscape of cholangiocarcinoma, to understand the molecular diversity of patients with FGFR2 fusions or rearrangements, and to interrogate the clinicogenomics of patients treated with pemigatinib. Our study highlights the utility of genomic profiling in clinical trials.This article is highlighted in the In This Issue feature, p. 211.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧的绮菱完成签到 ,获得积分10
刚刚
薛厌完成签到,获得积分10
刚刚
ZZY发布了新的文献求助10
刚刚
止观完成签到,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
hcm发布了新的文献求助10
2秒前
velablk发布了新的文献求助10
3秒前
李健应助Silence采纳,获得10
3秒前
阿良完成签到,获得积分10
4秒前
4秒前
Akim应助科研大哈巴采纳,获得10
4秒前
4秒前
4秒前
5秒前
sine_mora发布了新的文献求助20
5秒前
zstzst完成签到,获得积分10
5秒前
5秒前
英俊的铭应助可靠笑翠采纳,获得10
6秒前
whykm91完成签到 ,获得积分10
7秒前
科研通AI2S应助asa采纳,获得10
7秒前
sh131发布了新的文献求助10
7秒前
包寄容完成签到,获得积分20
7秒前
久违发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI5应助培养皿采纳,获得30
8秒前
不安青牛应助666666采纳,获得10
9秒前
kk的小屋完成签到,获得积分10
9秒前
Orange应助奋斗瑶采纳,获得10
9秒前
momo完成签到 ,获得积分10
9秒前
lucky发布了新的文献求助10
9秒前
10秒前
小慧发布了新的文献求助10
10秒前
丘比特应助诚心的安珊采纳,获得10
11秒前
11秒前
11秒前
科研通AI2S应助跳跃似狮采纳,获得10
12秒前
WR发布了新的文献求助30
12秒前
Quinn完成签到 ,获得积分10
12秒前
13秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474842
求助须知:如何正确求助?哪些是违规求助? 3066929
关于积分的说明 9101738
捐赠科研通 2758293
什么是DOI,文献DOI怎么找? 1513527
邀请新用户注册赠送积分活动 699633
科研通“疑难数据库(出版商)”最低求助积分说明 699065