串联
带隙
钙钛矿(结构)
材料科学
能量转换效率
光伏系统
化学工程
光电子学
锡
纳米技术
复合材料
电气工程
冶金
工程类
作者
Renxing Lin,Ke Xiao,Zhengyuan Qin,Qiaolei Han,Chunfeng Zhang,Mingyang Wei,Makhsud I. Saidaminov,Yuan Gao,Jun Xu,Min Xiao,Aidong Li,Jia Zhu,Edward H. Sargent,Hairen Tan
出处
期刊:Nature Energy
[Springer Nature]
日期:2019-09-23
卷期号:4 (10): 864-873
被引量:830
标识
DOI:10.1038/s41560-019-0466-3
摘要
Combining wide-bandgap and narrow-bandgap perovskites to construct monolithic all-perovskite tandem solar cells offers avenues for continued increases in photovoltaic (PV) power conversion efficiencies (PCEs). However, actual efficiencies today are diminished by the subpar performance of narrow-bandgap subcells. Here we report a strategy to reduce Sn vacancies in mixed Pb–Sn narrow-bandgap perovskites that use metallic tin to reduce the Sn4+ (an oxidation product of Sn2+) to Sn2+ via a comproportionation reaction. We increase, thereby, the charge-carrier diffusion length in narrow-bandgap perovskites to 3 μm for the best materials. We obtain a PCE of 21.1% for 1.22-eV narrow-bandgap solar cells. We fabricate monolithic all-perovskite tandem cells with certified PCEs of 24.8% for small-area devices (0.049 cm2) and of 22.1% for large-area devices (1.05 cm2). The tandem cells retain 90% of their performance following 463 h of operation at the maximum power point under full 1-sun illumination. Improvements in the efficiency and stability of low-bandgap perovskite solar cells are key to enabling all-perovskite solar cells. Here, Lin et al. use metallic tin to prevent oxidation in such low-gap perovskite and demonstrate 24.8%-efficient tandems that are stable for over 400 h under operating conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI