材料科学
吸附
牛血清白蛋白
溶菌酶
蛋白质吸附
色谱法
聚合物
化学工程
化学
有机化学
生物化学
工程类
复合材料
作者
Yang Wang,Yingying Wei,Pengcheng Gao,Si Sun,Qian Du,Zhifei Wang,Yong Jiang
标识
DOI:10.1021/acsami.0c19734
摘要
Magnetic material is considered to as a major concern material for the enrichment of histidine-rich proteins (His-proteins) via metal-ion affinity. In this work, magnetic polymer microspheres with core–shell structure (Fe3O4@PMAA@Ni) were successfully prepared via reflux-precipitation polymerization followed by in situ reduction and growth of Ni2+. The obtained Ni nanofoams with flower-like structure and uniform pore size (3.34 nm) provided numerous binding sites for His-proteins. The adsorption performance of Fe3O4@PMAA@Ni microspheres for His-proteins was estimated via selectively separating bovine hemoglobin (BHb) and bovine serum albumin (BSA) from a matrix composed of BHb, BSA, and lysozyme (LYZ). The results indicated that Fe3O4@PMAA@Ni microspheres could efficiently and selectively separate His-proteins from the matrix, with a maximum adsorption capacity of ∼2660 mg/g for BHb. Moreover, Fe3O4@PMAA@Ni microspheres exhibited good stability and recyclability for BHb separation over seven cycles. Therefore, this work reported a novel and facile strategy to prepare core–shell Fe3O4@PMAA@Ni microspheres, which was promising for practical applications of His-protein separation and purification in proteomics.
科研通智能强力驱动
Strongly Powered by AbleSci AI