Spectral–Spatial–Temporal MAP-Based Sub-Pixel Mapping for Land-Cover Change Detection

平滑的 最大后验估计 正规化(语言学) 土地覆盖 计算机科学 像素 遥感 图像分辨率 先验与后验 基本事实 人工智能 计算机视觉 数学 地理 最大似然 土地利用 土木工程 哲学 工程类 认识论 统计
作者
Da He,Yanfei Zhong,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 1696-1717 被引量:33
标识
DOI:10.1109/tgrs.2019.2947708
摘要

The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral-spatial-temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
养乐多完成签到 ,获得积分10
1秒前
3秒前
4秒前
7秒前
丰知然应助科研通管家采纳,获得10
8秒前
静默向上完成签到,获得积分10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
丰知然应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
嘉心糖应助科研通管家采纳,获得30
8秒前
丰知然应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得20
8秒前
咚咚应助科研通管家采纳,获得10
8秒前
杳鸢应助科研通管家采纳,获得20
8秒前
8秒前
JamesPei应助科研通管家采纳,获得10
9秒前
高挑的外绣应助啥东西啥采纳,获得30
9秒前
与你同在123完成签到,获得积分10
10秒前
lalalala发布了新的文献求助10
10秒前
逢投必中发布了新的文献求助10
12秒前
hybbbb发布了新的文献求助10
16秒前
1234567890发布了新的文献求助10
22秒前
大糖糕僧完成签到,获得积分10
22秒前
852应助自信小天鹅采纳,获得10
23秒前
hybbbb完成签到,获得积分10
24秒前
25秒前
离拾完成签到,获得积分10
25秒前
李爱国应助Brain采纳,获得10
26秒前
bkagyin应助zg采纳,获得10
28秒前
Jasper应助无心的电话采纳,获得30
29秒前
32秒前
34秒前
35秒前
12发布了新的文献求助10
37秒前
慕容半邪发布了新的文献求助10
38秒前
一一发布了新的文献求助10
38秒前
38秒前
wang5945发布了新的文献求助10
38秒前
39秒前
40秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316704
求助须知:如何正确求助?哪些是违规求助? 2948473
关于积分的说明 8540804
捐赠科研通 2624359
什么是DOI,文献DOI怎么找? 1436100
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651724