Spectral–Spatial–Temporal MAP-Based Sub-Pixel Mapping for Land-Cover Change Detection

平滑的 最大后验估计 正规化(语言学) 土地覆盖 计算机科学 像素 遥感 图像分辨率 先验与后验 基本事实 人工智能 计算机视觉 数学 地理 最大似然 土地利用 土木工程 工程类 哲学 统计 认识论
作者
Da He,Yanfei Zhong,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 1696-1717 被引量:33
标识
DOI:10.1109/tgrs.2019.2947708
摘要

The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral-spatial-temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助xxm采纳,获得10
1秒前
2秒前
3秒前
卷aaaa完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
别老睡觉完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
6秒前
6秒前
黄渠成发布了新的文献求助10
7秒前
S1发布了新的文献求助10
8秒前
xu1227完成签到,获得积分10
9秒前
避橙完成签到,获得积分10
9秒前
科研通AI6应助李天王采纳,获得10
10秒前
ruby完成签到,获得积分10
12秒前
潘潘发布了新的文献求助10
13秒前
11完成签到,获得积分10
13秒前
13秒前
希望天下0贩的0应助张正采纳,获得10
13秒前
14秒前
16秒前
华仔应助少7一点8采纳,获得10
16秒前
DiJia发布了新的文献求助10
17秒前
沉默毛巾完成签到,获得积分10
17秒前
17秒前
峪星完成签到 ,获得积分10
19秒前
111完成签到,获得积分10
19秒前
20秒前
20秒前
xxfsx应助LL采纳,获得20
23秒前
科研通AI2S应助ruby采纳,获得10
25秒前
水水发布了新的文献求助20
26秒前
洁净的天佑完成签到,获得积分10
26秒前
28秒前
潘潘完成签到,获得积分10
29秒前
谁家那小谁完成签到,获得积分10
29秒前
29秒前
LL完成签到,获得积分10
30秒前
又困完成签到 ,获得积分10
32秒前
Gauss应助Hathaway采纳,获得30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568