Spectral–Spatial–Temporal MAP-Based Sub-Pixel Mapping for Land-Cover Change Detection

平滑的 最大后验估计 正规化(语言学) 土地覆盖 计算机科学 像素 遥感 图像分辨率 先验与后验 基本事实 人工智能 计算机视觉 数学 地理 最大似然 土地利用 土木工程 哲学 工程类 认识论 统计
作者
Da He,Yanfei Zhong,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 1696-1717 被引量:33
标识
DOI:10.1109/tgrs.2019.2947708
摘要

The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral-spatial-temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初初见你完成签到,获得积分10
1秒前
郑郑得政发布了新的文献求助10
1秒前
无花果应助ZZ采纳,获得10
1秒前
文武发布了新的文献求助10
2秒前
3秒前
Junsir发布了新的文献求助10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
8R60d8应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
标致的梦槐完成签到,获得积分10
4秒前
斯文败类应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
5秒前
无花果应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
8R60d8应助科研通管家采纳,获得10
5秒前
Hello应助DIKING采纳,获得10
6秒前
斯文败类应助文武采纳,获得10
8秒前
lslfreedom发布了新的文献求助10
9秒前
SciGPT应助标致的梦槐采纳,获得10
9秒前
SZY发布了新的文献求助20
11秒前
眯眯眼的不斜完成签到,获得积分10
11秒前
浮游应助南城采纳,获得10
11秒前
12秒前
Rabbit完成签到 ,获得积分10
12秒前
13秒前
14秒前
gwkki完成签到,获得积分10
15秒前
15秒前
15秒前
顺利皮蛋应助ice7采纳,获得50
15秒前
小蘑菇应助77采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Symbiosis: A Very Short Introduction 1500
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4961590
求助须知:如何正确求助?哪些是违规求助? 4221883
关于积分的说明 13148697
捐赠科研通 4005937
什么是DOI,文献DOI怎么找? 2192560
邀请新用户注册赠送积分活动 1206422
关于科研通互助平台的介绍 1117939