Spectral–Spatial–Temporal MAP-Based Sub-Pixel Mapping for Land-Cover Change Detection

平滑的 最大后验估计 正规化(语言学) 土地覆盖 计算机科学 像素 遥感 图像分辨率 先验与后验 基本事实 人工智能 计算机视觉 数学 地理 最大似然 土地利用 土木工程 工程类 哲学 统计 认识论
作者
Da He,Yanfei Zhong,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:58 (3): 1696-1717 被引量:33
标识
DOI:10.1109/tgrs.2019.2947708
摘要

The maximum a posteriori (MAP) estimation model-based sub-pixel mapping (SPM) method is an alternative way to solve the ill-posed SPM problem. The MAP estimation model has been proven to be an effective SPM approach and has been extensively developed over the past few years, as a result of its effective regularization capability that comes from the spatial regularization model. However, various spatial regularization models do not always truly reflect the detailed spatial distribution in a real situation, and the over-smoothing effect of the spatial regularization model always tends to efface the detailed structural information. In this article, under the scenario of time-series observation by remote sensing imagery, the joint spectral-spatial-temporal MAP-based (SST_MAP) model for SPM is proposed. In SST_MAP, a newly developed temporal regularization model is added to the MAP model, based on the prerequisite for a temporally close fine image covering the same study region. This available fine image can provide the specific spatial structures most closely conforming to the ground truth for a more precise constraint, thereby reducing the over-smoothing effect. Furthermore, the three dimensions are mutually balanced and mutually constrained, to reach an equilibrium point and achieve restoration of both smooth areas for the homogeneous land-cover classes and a detailed structure for the heterogeneous land-cover classes. Four experiments were designed to validate the proposed SST_MAP: three synthetic-image experiments and one real-image experiment. The restoration results confirm the superiority of the proposed SST_MAP model. Notably, under the background of time-series observation, SST_MAP provides an alternative way of land-cover change detection (LCCD), achieving both detailed spatial-scale and high-frequency temporal LCCD observation for the study case of urbanization analysis within the city of Wuhan in China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助braving采纳,获得10
刚刚
刚刚
sta完成签到,获得积分20
刚刚
1秒前
英勇飞机发布了新的文献求助10
1秒前
2秒前
3秒前
JAJ发布了新的文献求助10
4秒前
嘻嘻应助小金鱼采纳,获得10
4秒前
小芋泥完成签到,获得积分10
5秒前
展锋发布了新的文献求助10
5秒前
呆萌的雁桃完成签到,获得积分10
6秒前
英俊的铭应助ytttt采纳,获得30
6秒前
7秒前
默默采枫完成签到,获得积分20
7秒前
QH完成签到,获得积分10
7秒前
nevermeant发布了新的文献求助30
8秒前
小马甲应助金玉采纳,获得10
8秒前
在水一方应助宋佳珍采纳,获得10
8秒前
Georges-09发布了新的文献求助10
8秒前
8秒前
负责斑马发布了新的文献求助10
9秒前
加百莉发布了新的文献求助10
9秒前
桐桐应助XH采纳,获得10
10秒前
11秒前
11秒前
大维C完成签到,获得积分10
12秒前
小芋泥发布了新的文献求助10
12秒前
12秒前
12秒前
HYC完成签到,获得积分10
13秒前
明亮依波完成签到,获得积分10
13秒前
MAO发布了新的文献求助10
14秒前
爆米花应助正常采纳,获得10
14秒前
14秒前
ZZhou完成签到,获得积分10
14秒前
所所应助炫炫炫采纳,获得10
15秒前
小解发布了新的文献求助10
15秒前
默默采枫发布了新的文献求助10
16秒前
爬坑的良完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5308630
求助须知:如何正确求助?哪些是违规求助? 4453704
关于积分的说明 13857839
捐赠科研通 4341445
什么是DOI,文献DOI怎么找? 2383900
邀请新用户注册赠送积分活动 1378533
关于科研通互助平台的介绍 1346495