Sustainable use of chemically modified tyre rubber in concrete: Machine learning based novel predictive model

基因表达程序设计 抗压强度 过度拟合 线性回归 高效减水剂 经验模型 计算机科学 数学 材料科学 复合材料 机器学习 模拟 人工神经网络
作者
Piyu Li,Mohsin Ali Khan,Ahmed M. Galal,Hamad Hassan Awan,Adeel Zafar,Muhammad Faisal Javed,M. Ijaz Khan,Sumaira Qayyum,M.Y. Malik,Fuzhang Wang
出处
期刊:Chemical Physics Letters [Elsevier]
卷期号:793: 139478-139478 被引量:34
标识
DOI:10.1016/j.cplett.2022.139478
摘要

To encourage the consumption of crumb rubber (CR), gene expression programming (GEP) has been exercised in this paper to establish empirical models for estimation of mechanical properties of concrete made with NaOH treated CR. An extensive and reliable database of compressive strength of concrete made with NaOH treated CR is established through a comprehensive literature review. Literature review showed that compressive strength of NaOH treated CR concrete is affected by percentage of CR used as a replacement of sand (RS%), concentration of NaOH solution (NC in %), period of NaOH pre-treatment (PTP in hours), water to cement ratio (W/C), quantity of sand (S in kg/m3) and quantity of superplasticizer (SP in kg/m3). The performance of the established model is evaluated by doing parametric analysis, applying statistical checks and comparing with regression models. The R-values in the testing phase of GEP, linear and non-linear regression (LR and NLR) equations are 0.90 and 0.77 each respectively. Furthermore, objective function (OF) of GEP model is 25%, and 33% better than LR and NLR model. Thus, results reflected that the proposed GEP model is more accurate and possess a high generalization and prediction capability than LR and NLR equations with resolved overfitting issue. The results of this research can boost the re-usage of CR for expansion of green concrete leading to environmental safety and economic advantages.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
打打应助整齐的冰珍采纳,获得10
1秒前
柴啊发布了新的文献求助10
1秒前
2秒前
强强发布了新的文献求助10
2秒前
3秒前
deer完成签到,获得积分10
3秒前
3秒前
充电宝应助sunstar采纳,获得10
4秒前
语雪发布了新的文献求助10
5秒前
不许焦绿o发布了新的文献求助10
6秒前
极品男大发布了新的文献求助10
6秒前
郭萌完成签到,获得积分10
6秒前
NexusExplorer应助见贤思齐采纳,获得30
6秒前
草莓软糖完成签到,获得积分10
6秒前
笨笨的兰完成签到,获得积分10
6秒前
沈惠映完成签到 ,获得积分10
7秒前
7秒前
科目三应助11采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
釉荼发布了新的文献求助10
8秒前
浊酒临江风完成签到 ,获得积分10
9秒前
9秒前
观察者小黑完成签到,获得积分10
9秒前
9秒前
TARS完成签到,获得积分10
9秒前
充电宝应助极品男大采纳,获得10
9秒前
石本松发布了新的文献求助10
10秒前
10秒前
10秒前
叶嘉琪关注了科研通微信公众号
10秒前
亓大大完成签到,获得积分10
11秒前
11秒前
爆米花应助刘研采纳,获得10
11秒前
13秒前
13秒前
可靠代丝发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465271
求助须知:如何正确求助?哪些是违规求助? 4569649
关于积分的说明 14320326
捐赠科研通 4496051
什么是DOI,文献DOI怎么找? 2463064
邀请新用户注册赠送积分活动 1452084
关于科研通互助平台的介绍 1427253