亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images

计算机科学 分级(工程) 模式识别(心理学) 放大倍数 人工智能 卷积神经网络 深度学习 特征提取 稳健性(进化) 生物化学 化学 土木工程 工程类 基因
作者
Lingqiao Li,Xipeng Pan,Huihua Yang,Zhenbing Liu,Yubei He,Zhong‐Ming Li,Yongxian Fan,Zhiwei Cao,Longhao Zhang
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:79 (21-22): 14509-14528 被引量:74
标识
DOI:10.1007/s11042-018-6970-9
摘要

Fine-grained classification and grading of breast cancer (BC) histopathological images are of great value in clinical application. However, automatic classification and grading of BC histopathological images are complicated by (1) small inter-class variance and large intra-class variance exist in BC histopathological images, and (2) features extracted from similar histopathological images with different magnification are quite different. To address these issues, an improved deep convolution neural network model is proposed and the procedure can be divided into three main stages. Firstly, in the representation learning process, multi-class recognition task and verification task of image pair are combined. Secondly, in the feature extraction process, a prior knowledge is built, which is "the variances in feature outputs between different subclasses is relatively large while the variance between the same subclass is small." Additionally, the prior information that histopathological images with different magnification belong to the same subclass are embedded in the feature extraction process, which contributes to less sensitive with image magnification. The experimental results based on three different histopathological image datasets show that the performance of the proposed method is better than state of the art, with better robustness and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
5秒前
舒服的觅夏完成签到,获得积分10
9秒前
10秒前
赘婿应助shinn采纳,获得10
18秒前
阿里完成签到,获得积分10
20秒前
1111关注了科研通微信公众号
22秒前
23秒前
动听的涵山完成签到,获得积分10
25秒前
思源应助郴欧尼采纳,获得10
25秒前
耕云钓月发布了新的文献求助10
27秒前
长安宁完成签到 ,获得积分10
28秒前
29秒前
34秒前
赘婿应助耕云钓月采纳,获得10
36秒前
shinn发布了新的文献求助10
37秒前
Ava应助shinn采纳,获得10
42秒前
43秒前
44秒前
54秒前
shinn发布了新的文献求助10
1分钟前
小智完成签到,获得积分10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
小智发布了新的文献求助10
1分钟前
耕云钓月发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
然463完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
夜夜景发布了新的文献求助10
1分钟前
1分钟前
美美发布了新的文献求助10
1分钟前
李爱国应助shinn采纳,获得10
1分钟前
忆修发布了新的文献求助30
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772534
求助须知:如何正确求助?哪些是违规求助? 5599698
关于积分的说明 15429759
捐赠科研通 4905497
什么是DOI,文献DOI怎么找? 2639436
邀请新用户注册赠送积分活动 1587360
关于科研通互助平台的介绍 1542247