亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-task deep learning for fine-grained classification and grading in breast cancer histopathological images

计算机科学 分级(工程) 模式识别(心理学) 放大倍数 人工智能 卷积神经网络 深度学习 特征提取 稳健性(进化) 生物化学 基因 工程类 土木工程 化学
作者
Lingqiao Li,Xipeng Pan,Huihua Yang,Zhenbing Liu,Yubei He,Zhong‐Ming Li,Yongxian Fan,Zhiwei Cao,Longhao Zhang
出处
期刊:Multimedia Tools and Applications [Springer Nature]
卷期号:79 (21-22): 14509-14528 被引量:74
标识
DOI:10.1007/s11042-018-6970-9
摘要

Fine-grained classification and grading of breast cancer (BC) histopathological images are of great value in clinical application. However, automatic classification and grading of BC histopathological images are complicated by (1) small inter-class variance and large intra-class variance exist in BC histopathological images, and (2) features extracted from similar histopathological images with different magnification are quite different. To address these issues, an improved deep convolution neural network model is proposed and the procedure can be divided into three main stages. Firstly, in the representation learning process, multi-class recognition task and verification task of image pair are combined. Secondly, in the feature extraction process, a prior knowledge is built, which is "the variances in feature outputs between different subclasses is relatively large while the variance between the same subclass is small." Additionally, the prior information that histopathological images with different magnification belong to the same subclass are embedded in the feature extraction process, which contributes to less sensitive with image magnification. The experimental results based on three different histopathological image datasets show that the performance of the proposed method is better than state of the art, with better robustness and generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助yuuan采纳,获得10
刚刚
深情安青应助光亮的天真采纳,获得10
5秒前
YY发布了新的文献求助10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
6秒前
8秒前
nnn7发布了新的文献求助10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
张贵虎发布了新的文献求助10
11秒前
爆米花应助wise111采纳,获得10
13秒前
YY完成签到,获得积分20
15秒前
18秒前
19秒前
李健的粉丝团团长应助YY采纳,获得10
19秒前
20秒前
23秒前
26秒前
快了科研发布了新的文献求助30
29秒前
yuuan完成签到,获得积分10
34秒前
37秒前
39秒前
快了科研完成签到,获得积分10
39秒前
41秒前
酷波er应助吴逸彪采纳,获得10
44秒前
英姑应助炙心采纳,获得10
47秒前
51秒前
52秒前
55秒前
吴逸彪发布了新的文献求助10
56秒前
mmh发布了新的文献求助10
56秒前
57秒前
1分钟前
坚强煜城发布了新的文献求助10
1分钟前
炙心发布了新的文献求助10
1分钟前
wise111发布了新的文献求助10
1分钟前
1分钟前
Ava应助吴逸彪采纳,获得10
1分钟前
Huayan发布了新的文献求助30
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509398
求助须知:如何正确求助?哪些是违规求助? 4604318
关于积分的说明 14489605
捐赠科研通 4539084
什么是DOI,文献DOI怎么找? 2487285
邀请新用户注册赠送积分活动 1469726
关于科研通互助平台的介绍 1441944