Micro Gas Turbine fault detection and isolation with a combination of Artificial Neural Network and off-design performance analysis

计算机科学 灵敏度(控制系统) 故障检测与隔离 人工神经网络 气体压缩机 噪音(视频) 航程(航空) 涡轮机 断层(地质) 汽车工程 降级(电信) 可靠性工程 电子工程 人工智能 工程类 材料科学 机械工程 复合材料 地震学 地质学 执行机构 图像(数学) 电信
作者
S.S. Talebi,Ali Madadi,A. M. Tousi,Mehrdad Kiaee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104900-104900 被引量:19
标识
DOI:10.1016/j.engappai.2022.104900
摘要

Recently Micro Gas Turbines deployment in smart grids is growing, which increases engine load change during its lifecycle; consequently, lifetime reduces faster, and diagnostics is more highlighted. Engine complex dynamic limits studies to only system-level diagnostics at the full-load operation, whereas measurements’ uncertainties and gradual degradation are often neglected. This study proposes a diagnostics scheme to detect and isolate faults in a wide range of part loads and degradation in the presence of uncertainties. An off-design model of Micro Gas Turbine is developed, and uncertainties are considered for preparing a comprehensive training database. An artificial Neural Network is employed to understand the nonlinear correlation between measurements and components’ health state. Different sets of measurements are tested to minimize the number of required measurements. It demonstrates power, and shaft speed measuring is necessary for accurate detection. Moreover, to present appropriate fault isolation using power, shaft speed, exhaust temperature, compressor discharge pressure, and temperature are required. The study indicates diagnostics performance is not sensitive to load variety that exists in the database but shows considerable sensitivity to degradation severities variety. Noise level effects on diagnostics performance are investigated to evaluate the importance of sensors’ uncertainty considerations. It reveals that detection is not so sensitive to the noise level. However, isolation shows more sensitivity. The result demonstrates the high capability of the proposed approach for establishing system level and component level diagnostics in a broad operating range and dealing with measurements’ uncertainties engine high complexity and nonlinearity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助向北游采纳,获得10
刚刚
xiaozou55完成签到 ,获得积分10
1秒前
大力完成签到 ,获得积分10
3秒前
5秒前
zhangyuting完成签到 ,获得积分10
6秒前
kid1412完成签到 ,获得积分10
6秒前
xn201120完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
小新小新完成签到 ,获得积分10
9秒前
Dromaeotroodon完成签到,获得积分10
10秒前
江城闲鹤发布了新的文献求助10
10秒前
Singularity应助科研通管家采纳,获得10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
Singularity应助科研通管家采纳,获得10
14秒前
leaolf应助科研通管家采纳,获得150
14秒前
14秒前
14秒前
15秒前
Tina完成签到 ,获得积分10
18秒前
21秒前
tryagain发布了新的文献求助10
24秒前
争气完成签到 ,获得积分10
24秒前
WZH完成签到,获得积分10
26秒前
李爱国应助江城闲鹤采纳,获得10
29秒前
材1完成签到 ,获得积分10
29秒前
FashionBoy应助up采纳,获得10
30秒前
量子星尘发布了新的文献求助10
30秒前
paper完成签到,获得积分10
31秒前
情怀应助wubin69采纳,获得10
34秒前
linnnn完成签到,获得积分20
35秒前
tryagain完成签到,获得积分10
40秒前
yoyofun完成签到,获得积分10
40秒前
40秒前
皮皮完成签到 ,获得积分10
42秒前
nojego完成签到,获得积分10
45秒前
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044603
求助须知:如何正确求助?哪些是违规求助? 4274186
关于积分的说明 13323344
捐赠科研通 4087837
什么是DOI,文献DOI怎么找? 2236545
邀请新用户注册赠送积分活动 1243935
关于科研通互助平台的介绍 1171966