Micro Gas Turbine fault detection and isolation with a combination of Artificial Neural Network and off-design performance analysis

计算机科学 灵敏度(控制系统) 故障检测与隔离 人工神经网络 气体压缩机 噪音(视频) 航程(航空) 涡轮机 断层(地质) 汽车工程 降级(电信) 可靠性工程 电子工程 人工智能 工程类 材料科学 机械工程 复合材料 地震学 地质学 执行机构 图像(数学) 电信
作者
S.S. Talebi,Ali Madadi,A. M. Tousi,Mehrdad Kiaee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:113: 104900-104900 被引量:19
标识
DOI:10.1016/j.engappai.2022.104900
摘要

Recently Micro Gas Turbines deployment in smart grids is growing, which increases engine load change during its lifecycle; consequently, lifetime reduces faster, and diagnostics is more highlighted. Engine complex dynamic limits studies to only system-level diagnostics at the full-load operation, whereas measurements’ uncertainties and gradual degradation are often neglected. This study proposes a diagnostics scheme to detect and isolate faults in a wide range of part loads and degradation in the presence of uncertainties. An off-design model of Micro Gas Turbine is developed, and uncertainties are considered for preparing a comprehensive training database. An artificial Neural Network is employed to understand the nonlinear correlation between measurements and components’ health state. Different sets of measurements are tested to minimize the number of required measurements. It demonstrates power, and shaft speed measuring is necessary for accurate detection. Moreover, to present appropriate fault isolation using power, shaft speed, exhaust temperature, compressor discharge pressure, and temperature are required. The study indicates diagnostics performance is not sensitive to load variety that exists in the database but shows considerable sensitivity to degradation severities variety. Noise level effects on diagnostics performance are investigated to evaluate the importance of sensors’ uncertainty considerations. It reveals that detection is not so sensitive to the noise level. However, isolation shows more sensitivity. The result demonstrates the high capability of the proposed approach for establishing system level and component level diagnostics in a broad operating range and dealing with measurements’ uncertainties engine high complexity and nonlinearity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
青稞的酒应助company采纳,获得10
刚刚
小黄完成签到 ,获得积分10
刚刚
李健应助程院采纳,获得10
1秒前
所所应助胖肉肉采纳,获得10
2秒前
Sheryl发布了新的文献求助10
2秒前
GG完成签到 ,获得积分10
2秒前
匆匆完成签到,获得积分10
2秒前
汉堡包应助谨慎的尔白采纳,获得10
2秒前
4秒前
jianjiao完成签到,获得积分10
5秒前
yangkunmedical完成签到,获得积分10
6秒前
勤奋完成签到,获得积分0
7秒前
wangyi邮箱完成签到,获得积分10
8秒前
余额发布了新的文献求助10
9秒前
11秒前
11秒前
11秒前
11秒前
xu完成签到,获得积分10
13秒前
上官若男应助tonight采纳,获得10
14秒前
麋鹿完成签到 ,获得积分10
14秒前
14秒前
华十三完成签到,获得积分10
14秒前
呜呜发布了新的文献求助10
16秒前
酷波er应助lql采纳,获得10
16秒前
小马甲应助正直凌文采纳,获得20
17秒前
小豆豆应助luan采纳,获得30
17秒前
17秒前
风清扬发布了新的文献求助10
17秒前
宁静发布了新的文献求助10
18秒前
qiuxin完成签到,获得积分10
18秒前
20秒前
研友_VZG7GZ应助莎莎士比亚采纳,获得30
20秒前
20秒前
yph完成签到,获得积分10
21秒前
houfei发布了新的文献求助10
22秒前
hhhblabla应助梓榆采纳,获得20
23秒前
Sheryl完成签到,获得积分10
24秒前
24秒前
石头发布了新的文献求助10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089