Micro Gas Turbine fault detection and isolation with a combination of Artificial Neural Network and off-design performance analysis

计算机科学 灵敏度(控制系统) 故障检测与隔离 人工神经网络 气体压缩机 噪音(视频) 航程(航空) 涡轮机 断层(地质) 汽车工程 降级(电信) 可靠性工程 电子工程 人工智能 工程类 材料科学 机械工程 电信 地震学 执行机构 复合材料 地质学 图像(数学)
作者
S.S. Talebi,Ali Madadi,A. M. Tousi,Mehrdad Kiaee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104900-104900 被引量:19
标识
DOI:10.1016/j.engappai.2022.104900
摘要

Recently Micro Gas Turbines deployment in smart grids is growing, which increases engine load change during its lifecycle; consequently, lifetime reduces faster, and diagnostics is more highlighted. Engine complex dynamic limits studies to only system-level diagnostics at the full-load operation, whereas measurements’ uncertainties and gradual degradation are often neglected. This study proposes a diagnostics scheme to detect and isolate faults in a wide range of part loads and degradation in the presence of uncertainties. An off-design model of Micro Gas Turbine is developed, and uncertainties are considered for preparing a comprehensive training database. An artificial Neural Network is employed to understand the nonlinear correlation between measurements and components’ health state. Different sets of measurements are tested to minimize the number of required measurements. It demonstrates power, and shaft speed measuring is necessary for accurate detection. Moreover, to present appropriate fault isolation using power, shaft speed, exhaust temperature, compressor discharge pressure, and temperature are required. The study indicates diagnostics performance is not sensitive to load variety that exists in the database but shows considerable sensitivity to degradation severities variety. Noise level effects on diagnostics performance are investigated to evaluate the importance of sensors’ uncertainty considerations. It reveals that detection is not so sensitive to the noise level. However, isolation shows more sensitivity. The result demonstrates the high capability of the proposed approach for establishing system level and component level diagnostics in a broad operating range and dealing with measurements’ uncertainties engine high complexity and nonlinearity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助过时的砖头采纳,获得10
刚刚
刚刚
邹友亮发布了新的文献求助10
刚刚
1秒前
1秒前
爱笑的树叶完成签到,获得积分10
1秒前
bo发布了新的文献求助10
2秒前
薛变霞完成签到,获得积分10
3秒前
科研通AI5应助多情的丹亦采纳,获得10
3秒前
hui发布了新的文献求助10
3秒前
浅斟低唱发布了新的文献求助10
3秒前
kc发布了新的文献求助10
4秒前
4秒前
johnz001完成签到,获得积分20
5秒前
Promise发布了新的文献求助10
5秒前
7秒前
情怀应助bo采纳,获得10
8秒前
8秒前
kilig应助没有你不行采纳,获得10
9秒前
Tyranny完成签到 ,获得积分10
9秒前
华仔应助zoe采纳,获得10
10秒前
吃鱼硕发布了新的文献求助10
10秒前
Andy1409完成签到,获得积分10
10秒前
10秒前
10秒前
ding应助kc采纳,获得10
11秒前
Leila发布了新的文献求助10
11秒前
科研通AI5应助邹友亮采纳,获得30
12秒前
小二郎应助凶狠的文昊采纳,获得30
14秒前
yi发布了新的文献求助40
14秒前
俏皮丹雪发布了新的文献求助10
15秒前
17秒前
吃鱼硕完成签到,获得积分10
18秒前
凶狠的文昊完成签到,获得积分10
18秒前
May完成签到 ,获得积分10
19秒前
飘逸的麦片完成签到,获得积分10
19秒前
CipherSage应助小白采纳,获得10
20秒前
所所应助怡然飞槐采纳,获得10
22秒前
22秒前
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3524730
求助须知:如何正确求助?哪些是违规求助? 3105601
关于积分的说明 9275012
捐赠科研通 2802788
什么是DOI,文献DOI怎么找? 1538175
邀请新用户注册赠送积分活动 716104
科研通“疑难数据库(出版商)”最低求助积分说明 709191