Micro Gas Turbine fault detection and isolation with a combination of Artificial Neural Network and off-design performance analysis

计算机科学 灵敏度(控制系统) 故障检测与隔离 人工神经网络 气体压缩机 噪音(视频) 航程(航空) 涡轮机 断层(地质) 汽车工程 降级(电信) 可靠性工程 电子工程 人工智能 工程类 材料科学 机械工程 复合材料 地震学 地质学 执行机构 图像(数学) 电信
作者
S.S. Talebi,Ali Madadi,A. M. Tousi,Mehrdad Kiaee
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:113: 104900-104900 被引量:19
标识
DOI:10.1016/j.engappai.2022.104900
摘要

Recently Micro Gas Turbines deployment in smart grids is growing, which increases engine load change during its lifecycle; consequently, lifetime reduces faster, and diagnostics is more highlighted. Engine complex dynamic limits studies to only system-level diagnostics at the full-load operation, whereas measurements’ uncertainties and gradual degradation are often neglected. This study proposes a diagnostics scheme to detect and isolate faults in a wide range of part loads and degradation in the presence of uncertainties. An off-design model of Micro Gas Turbine is developed, and uncertainties are considered for preparing a comprehensive training database. An artificial Neural Network is employed to understand the nonlinear correlation between measurements and components’ health state. Different sets of measurements are tested to minimize the number of required measurements. It demonstrates power, and shaft speed measuring is necessary for accurate detection. Moreover, to present appropriate fault isolation using power, shaft speed, exhaust temperature, compressor discharge pressure, and temperature are required. The study indicates diagnostics performance is not sensitive to load variety that exists in the database but shows considerable sensitivity to degradation severities variety. Noise level effects on diagnostics performance are investigated to evaluate the importance of sensors’ uncertainty considerations. It reveals that detection is not so sensitive to the noise level. However, isolation shows more sensitivity. The result demonstrates the high capability of the proposed approach for establishing system level and component level diagnostics in a broad operating range and dealing with measurements’ uncertainties engine high complexity and nonlinearity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
笨笨亦旋完成签到,获得积分20
2秒前
bkagyin应助帅气谷丝采纳,获得10
2秒前
F-超哥发布了新的文献求助10
4秒前
能干的烧鹅完成签到,获得积分10
4秒前
Jasper应助dididi采纳,获得10
4秒前
4秒前
youli完成签到 ,获得积分10
4秒前
caiia发布了新的文献求助10
5秒前
麦苗果果完成签到,获得积分10
5秒前
Jasper应助Bonnienuit采纳,获得50
6秒前
6秒前
邪恶土拨鼠应助害羞香菇采纳,获得10
6秒前
7秒前
大鹅发布了新的文献求助30
8秒前
wcxsmm发布了新的文献求助10
8秒前
ccm应助aa采纳,获得10
9秒前
舒心的耷完成签到,获得积分10
9秒前
雄关漫道完成签到,获得积分10
10秒前
JIE发布了新的文献求助10
10秒前
10秒前
抑郁小鼠解剖家完成签到,获得积分10
10秒前
天天完成签到,获得积分10
11秒前
米米豆完成签到,获得积分10
13秒前
小徐完成签到,获得积分10
13秒前
NexusExplorer应助caiia采纳,获得10
13秒前
所所应助wcxsmm采纳,获得10
14秒前
CodeCraft应助硫酸铝采纳,获得10
15秒前
汉堡包应助糯米糍采纳,获得10
16秒前
orixero应助高兴醉薇采纳,获得10
16秒前
缓慢的可乐完成签到,获得积分10
16秒前
DYQ发布了新的文献求助10
16秒前
17秒前
20秒前
21秒前
asdfghjkl完成签到 ,获得积分10
21秒前
22秒前
Orange应助伶俐夏旋采纳,获得30
23秒前
JIE关闭了JIE文献求助
25秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5382591
求助须知:如何正确求助?哪些是违规求助? 4505701
关于积分的说明 14022478
捐赠科研通 4415103
什么是DOI,文献DOI怎么找? 2425372
邀请新用户注册赠送积分活动 1418138
关于科研通互助平台的介绍 1396207