光电流
材料科学
阳极氧化
色素敏化染料
介观物理学
光伏
纳米技术
电解质
半导体
基质(水族馆)
氧化钛
氧化物
光电子学
透明导电膜
钛
太阳能电池
光伏系统
电极
化学工程
复合材料
薄膜
冶金
化学
物理化学
工程类
地质学
物理
海洋学
铝
生物
量子力学
生态学
作者
Jin Soo Kang,Hee Cheul Choi,Jin Kim,Hyeji Park,Jae Yup Kim,Jung Woo Choi,Seung Ho Yu,Kyung Jae Lee,Yun Sik Kang,Sun Ha Park,Yong Hun Cho,Jun‐Ho Yum,David C. Dunand,Heeman Choe,Yung Eun Sung
出处
期刊:Small
[Wiley]
日期:2017-07-19
卷期号:13 (34)
被引量:13
标识
DOI:10.1002/smll.201701458
摘要
Mesoscopic solar cells based on nanostructured oxide semiconductors are considered as a promising candidates to replace conventional photovoltaics employing costly materials. However, their overall performances are below the sufficient level required for practical usages. Herein, this study proposes an anodized Ti foam (ATF) with multidimensional and hierarchical architecture as a highly efficient photoelectrode for the generation of a large photocurrent. ATF photoelectrodes prepared by electrochemical anodization of freeze‐cast Ti foams have three favorable characteristics: (i) large surface area for enhanced light harvesting, (ii) 1D semiconductor structure for facilitated charge collection, and (iii) 3D highly conductive metallic current collector that enables exclusion of transparent conducting oxide substrate. Based on these advantages, when ATF is utilized in dye‐sensitized solar cells, short‐circuit photocurrent density up to 22.0 mA cm −2 is achieved in the conventional N719 dye‐I 3 − /I − redox electrolyte system even with an intrinsically inferior quasi‐solid electrolyte.
科研通智能强力驱动
Strongly Powered by AbleSci AI