Valence and core-level photoelectron spectroscopy studies of Fe2P$(10\bar{1}0)$: Effect of P segregation on the surface electronic structure

X射线光电子能谱 退火(玻璃) 解吸 溅射 分析化学(期刊) 价(化学) 谱线 光谱学 离子 材料科学 结晶学 化学 薄膜 物理化学 核磁共振 纳米技术 吸附 冶金 量子力学 色谱法 物理 有机化学 天文
作者
Yuichi Sugizaki,Hiroki Motoyama,Yuki Shimato,Tomoya Yoshida,Tatsuya Takano,K. Edamoto
出处
期刊:Japanese Journal of Applied Physics 卷期号:57 (11): 115701-115701 被引量:1
标识
DOI:10.7567/jjap.57.115701
摘要

The effect of P segregation on the electronic structure of Fe2P has been studied by soft X-ray photoelectron spectroscopy (PES). As the Fe2P surface was sputtered by Ar+ ion (2 kV, 10 min), the amount of P atoms in the surface region was reduced. The amount of surface P atoms was further reduced by annealing the sputtered surface at elevated annealing temperatures up to about 400 °C, and it was increased by annealing at temperatures higher than 400 °C. It was deduced from the analyses of the P 2p core-level PES spectra that desorption of P atoms weakly bonded to the surface, which are thought to be formed through the sputtering process, proceeded when the surface was annealed at temperatures lower than 500 °C. On the other hand, it was also deduced from the PES study that the segregation of bulk P atoms toward the surface proceeded when the annealing temperature was higher than 300 °C. These two processes were competing at 300–500 °C, leading to the minimum amount of surface P atoms at approximately 400 °C. The PES spectra were measured after annealing the sputtered surface at various temperatures, and it was found that the stabilization of the 3d states of surface Fe atoms due to the bonding with surrounding P atoms was ineffective irrespective of the amount of P atoms on Fe2P.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆瓜完成签到,获得积分10
1秒前
布丁完成签到,获得积分10
1秒前
朴素的士晋完成签到,获得积分10
1秒前
燕尔蓝发布了新的文献求助10
1秒前
我是王浩腾我是健身王完成签到,获得积分10
2秒前
2秒前
杰克李李发布了新的文献求助10
2秒前
wjs0406发布了新的文献求助10
2秒前
老李完成签到,获得积分10
2秒前
落寞寒荷完成签到,获得积分10
3秒前
fly the bike应助莉莉采纳,获得10
3秒前
拟拟发布了新的文献求助10
4秒前
Bo发布了新的文献求助10
4秒前
LCC完成签到 ,获得积分10
4秒前
南乔完成签到,获得积分10
5秒前
yangyang完成签到,获得积分10
5秒前
6秒前
钟是一梦完成签到,获得积分10
6秒前
6秒前
wanci应助Ll采纳,获得10
6秒前
7秒前
7秒前
孟柠柠发布了新的文献求助10
7秒前
青阳完成签到,获得积分10
8秒前
科研狗发布了新的文献求助20
9秒前
10秒前
10秒前
jarenthar完成签到 ,获得积分10
10秒前
10秒前
丘比特应助hata采纳,获得10
10秒前
顾矜应助lszhw采纳,获得10
11秒前
lqq完成签到 ,获得积分10
11秒前
11秒前
共享精神应助拟拟采纳,获得10
11秒前
11秒前
lhy12345完成签到,获得积分10
11秒前
非常可爱发布了新的文献求助20
12秒前
12秒前
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740