Bioinspired living structural color hydrogels

自愈水凝胶 结构着色 材料科学 纳米技术 化学 高分子化学 光电子学 光子晶体
作者
Fanfan Fu,Luoran Shang,Zhuoyue Chen,Yunru Yu,Yuanjin Zhao
出处
期刊:Science robotics [American Association for the Advancement of Science (AAAS)]
卷期号:3 (16) 被引量:503
标识
DOI:10.1126/scirobotics.aar8580
摘要

Structural color materials from existing natural organisms have been widely studied to enable artificial manufacture. Variable iridescence has attracted particular interest because of the displays of various brilliant examples. Existing synthetic, variable, structural color materials require external stimuli to provide changing displays, despite autonomous regulation being widespread among natural organisms, and therefore suffer from inherent limitations. Inspired by the structural color regulation mechanism of chameleons, we present a conceptually different structural color material that has autonomic regulation capability by assembling engineered cardiomyocyte tissues on synthetic inverse opal hydrogel films. The cell elongation and contraction in the beating processes of the cardiomyocytes caused the inverse opal structure of the substrate film to follow the same cycle of volume or morphology changes. This was observed as the synchronous shifting of its photonic band gap and structural colors. Such biohybrid structural color hydrogels can be used to construct a variety of living materials, such as two-dimensional self-regulating structural color patterns and three-dimensional dynamic Morpho butterflies. These examples indicated that the stratagem could provide an intrinsic color-sensing feedback to modify the system behavior/action for future biohybrid robots. In addition, by integrating the biohybrid structural color hydrogels into microfluidics, we developed a "heart-on-a-chip" platform featuring microphysiological visuality for biological research and drug screening. This biohybrid, living, structural color hydrogel may be widely used in the design of a variety of intelligent actuators and soft robotic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助yy采纳,获得10
1秒前
星辰大海应助小王小王采纳,获得10
1秒前
领导范儿应助小王小王采纳,获得10
1秒前
plumcute完成签到,获得积分10
2秒前
kdqiu完成签到,获得积分10
2秒前
2秒前
科目三应助Finger采纳,获得10
4秒前
子云完成签到,获得积分10
5秒前
一枚咸鱼发布了新的文献求助10
5秒前
彭于彦祖应助自然钢笔采纳,获得30
6秒前
6秒前
安静的芝麻完成签到,获得积分10
6秒前
j736999565完成签到,获得积分10
6秒前
Alicia发布了新的文献求助10
7秒前
LYNN完成签到,获得积分10
7秒前
糊涂的惠发布了新的文献求助10
7秒前
8秒前
谦让小松鼠完成签到 ,获得积分10
8秒前
zzzwwwkkk发布了新的文献求助10
8秒前
正霖完成签到,获得积分10
9秒前
科目三应助乐观的如雪采纳,获得10
9秒前
lemon发布了新的文献求助20
9秒前
勤恳慕蕊完成签到 ,获得积分10
9秒前
常佳仟完成签到,获得积分10
10秒前
10秒前
hjc完成签到,获得积分10
10秒前
yidi01完成签到,获得积分10
10秒前
123456发布了新的文献求助10
11秒前
MMP完成签到,获得积分10
11秒前
Barry完成签到,获得积分10
12秒前
慧慧完成签到 ,获得积分10
12秒前
wo完成签到 ,获得积分10
13秒前
14秒前
鱼雷完成签到,获得积分10
14秒前
SciGPT应助Ayan采纳,获得10
14秒前
huang96完成签到,获得积分10
14秒前
Ronnie发布了新的文献求助10
14秒前
15秒前
嘤嘤怪应助hizhyhy采纳,获得20
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Textbook of Interventional Radiology 1000
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294908
求助须知:如何正确求助?哪些是违规求助? 2930855
关于积分的说明 8448799
捐赠科研通 2603376
什么是DOI,文献DOI怎么找? 1421085
科研通“疑难数据库(出版商)”最低求助积分说明 660782
邀请新用户注册赠送积分活动 643592