Local feature-based mutual complexity for pixel-value-ordering reversible data hiding

像素 嵌入 计算复杂性理论 计算机科学 算法 杠杆(统计) 模式识别(心理学) 人工智能 数学
作者
Xinyi Gao,Zhibin Pan,Guojun Fan,Xiaoran Zhang,Hongzhi Yin
出处
期刊:Signal Processing [Elsevier BV]
卷期号:204: 108833-108833 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108833
摘要

In reversible data hiding, pixel-value-ordering (PVO) has become a widely used framework benefiting from its high-fidelity under low-capacity requirements. As an essential element in PVO-based methods, complexity could effectively avoid embedded images from unnecessary embedding distortions. There are two main context-pixel-selection strategies in existing complexity methods: inside-block and outside-block pixel selection strategy, which show strong complementarity. To make full use of this characteristic and further mitigate the insufficient feature representation problem in complexity, we propose a multi-complexity mechanism: Mutual Complexity. First, we analyse the relationship between complexity and Capacity-Distortion performance and innovatively regard the complexity problem as a binary classification problem. Then, precision and recall are taken as the optimization objectives and mutual pixels with the best performances could be selected. As a result, our proposed method can leverage different local features represented by various complexities and obtain the best classification result. Furthermore, to solve the block-dependent embedding problem in existing complexities, a simple but effective complexity, named Neighbor Complexity, is designed according to pixel location information. Experimental results show that Mutual Complexity could be easily generalized to different PVO-based methods and the embedding distortions are all effectively controlled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
llxiaomianyang完成签到,获得积分10
刚刚
刚刚
星辰大海应助七七采纳,获得10
1秒前
1秒前
拼搏惜蕊发布了新的文献求助10
1秒前
李萌发布了新的文献求助10
1秒前
浩二发布了新的文献求助10
3秒前
浩二发布了新的文献求助10
3秒前
CipherSage应助端庄向雁采纳,获得10
3秒前
muni应助吴豁采纳,获得10
4秒前
科研通AI6应助俊逸的难破采纳,获得10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
CC完成签到,获得积分10
4秒前
poletar发布了新的文献求助10
5秒前
qaz发布了新的文献求助10
5秒前
Tomsen发布了新的文献求助10
5秒前
6秒前
好怀念WE完成签到,获得积分20
6秒前
6秒前
7秒前
科研通AI6应助学术悍匪采纳,获得10
8秒前
李健的小迷弟应助李萌采纳,获得10
8秒前
han发布了新的文献求助10
10秒前
10秒前
WU完成签到,获得积分10
11秒前
mqthhh发布了新的文献求助10
11秒前
多多关注了科研通微信公众号
12秒前
今后应助猪猪hero采纳,获得30
12秒前
sunshine完成签到,获得积分10
13秒前
13秒前
小蘑菇应助kyhappy_2002采纳,获得10
14秒前
CodeCraft应助keweic采纳,获得10
14秒前
黄学无发布了新的文献求助10
14秒前
14秒前
Youngcy应助lmg采纳,获得10
15秒前
15秒前
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4942644
求助须知:如何正确求助?哪些是违规求助? 4208241
关于积分的说明 13081377
捐赠科研通 3987311
什么是DOI,文献DOI怎么找? 2183028
邀请新用户注册赠送积分活动 1198648
关于科研通互助平台的介绍 1111020