Local feature-based mutual complexity for pixel-value-ordering reversible data hiding

像素 嵌入 计算复杂性理论 计算机科学 算法 杠杆(统计) 模式识别(心理学) 人工智能 数学
作者
Xinyi Gao,Zhibin Pan,Guojun Fan,Xiaoran Zhang,Hongzhi Yin
出处
期刊:Signal Processing [Elsevier]
卷期号:204: 108833-108833 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108833
摘要

In reversible data hiding, pixel-value-ordering (PVO) has become a widely used framework benefiting from its high-fidelity under low-capacity requirements. As an essential element in PVO-based methods, complexity could effectively avoid embedded images from unnecessary embedding distortions. There are two main context-pixel-selection strategies in existing complexity methods: inside-block and outside-block pixel selection strategy, which show strong complementarity. To make full use of this characteristic and further mitigate the insufficient feature representation problem in complexity, we propose a multi-complexity mechanism: Mutual Complexity. First, we analyse the relationship between complexity and Capacity-Distortion performance and innovatively regard the complexity problem as a binary classification problem. Then, precision and recall are taken as the optimization objectives and mutual pixels with the best performances could be selected. As a result, our proposed method can leverage different local features represented by various complexities and obtain the best classification result. Furthermore, to solve the block-dependent embedding problem in existing complexities, a simple but effective complexity, named Neighbor Complexity, is designed according to pixel location information. Experimental results show that Mutual Complexity could be easily generalized to different PVO-based methods and the embedding distortions are all effectively controlled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莉莉完成签到,获得积分10
1秒前
Akim应助阳光的梦寒采纳,获得10
1秒前
赘婿应助狗狗明明采纳,获得10
2秒前
YY完成签到,获得积分0
4秒前
SciGPT应助毛毛酱采纳,获得10
4秒前
6秒前
淡定亦凝完成签到,获得积分10
7秒前
Akim应助看风景悠然在路采纳,获得10
7秒前
8秒前
迟jjpp完成签到,获得积分10
9秒前
刘迪应助wangfaqing942采纳,获得30
9秒前
徐凤年发布了新的文献求助10
10秒前
11秒前
斯文败类应助12334采纳,获得10
12秒前
13秒前
LL77发布了新的文献求助10
13秒前
英姑应助Priscilla采纳,获得30
14秒前
qq1640564935发布了新的文献求助10
15秒前
16秒前
香蕉觅云应助你是谁采纳,获得10
16秒前
16秒前
18秒前
迢迢笙箫给迢迢笙箫的求助进行了留言
18秒前
述说发布了新的文献求助10
19秒前
19秒前
Wenpandaen应助科研通管家采纳,获得20
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
FashionBoy应助科研通管家采纳,获得10
19秒前
orixero应助科研通管家采纳,获得10
19秒前
思源应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
年年发布了新的文献求助10
21秒前
CodeCraft应助Stone采纳,获得50
22秒前
23秒前
做自己的太阳完成签到,获得积分10
23秒前
23秒前
23秒前
23秒前
zhangxr发布了新的文献求助10
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145200
求助须知:如何正确求助?哪些是违规求助? 2796557
关于积分的说明 7820486
捐赠科研通 2452923
什么是DOI,文献DOI怎么找? 1305285
科研通“疑难数据库(出版商)”最低求助积分说明 627453
版权声明 601464