Local feature-based mutual complexity for pixel-value-ordering reversible data hiding

像素 嵌入 计算复杂性理论 计算机科学 算法 杠杆(统计) 模式识别(心理学) 人工智能 数学
作者
Xinyi Gao,Zhibin Pan,Guojun Fan,Xiaoran Zhang,Hongzhi Yin
出处
期刊:Signal Processing [Elsevier]
卷期号:204: 108833-108833 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108833
摘要

In reversible data hiding, pixel-value-ordering (PVO) has become a widely used framework benefiting from its high-fidelity under low-capacity requirements. As an essential element in PVO-based methods, complexity could effectively avoid embedded images from unnecessary embedding distortions. There are two main context-pixel-selection strategies in existing complexity methods: inside-block and outside-block pixel selection strategy, which show strong complementarity. To make full use of this characteristic and further mitigate the insufficient feature representation problem in complexity, we propose a multi-complexity mechanism: Mutual Complexity. First, we analyse the relationship between complexity and Capacity-Distortion performance and innovatively regard the complexity problem as a binary classification problem. Then, precision and recall are taken as the optimization objectives and mutual pixels with the best performances could be selected. As a result, our proposed method can leverage different local features represented by various complexities and obtain the best classification result. Furthermore, to solve the block-dependent embedding problem in existing complexities, a simple but effective complexity, named Neighbor Complexity, is designed according to pixel location information. Experimental results show that Mutual Complexity could be easily generalized to different PVO-based methods and the embedding distortions are all effectively controlled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
单身的溪流完成签到 ,获得积分10
2秒前
大李包发布了新的文献求助10
2秒前
苗松完成签到,获得积分10
3秒前
FashionBoy应助流北爷采纳,获得10
3秒前
乐乐应助奋斗的小林采纳,获得10
3秒前
sankumao完成签到,获得积分10
3秒前
京阿尼发布了新的文献求助10
3秒前
xia发布了新的文献求助10
4秒前
SCI发布了新的文献求助10
5秒前
5秒前
zhui发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
马静雨完成签到,获得积分20
6秒前
7秒前
7秒前
快乐小白菜应助shenzhou9采纳,获得10
7秒前
无花果应助aertom采纳,获得10
7秒前
小田发布了新的文献求助10
7秒前
sankumao发布了新的文献求助30
7秒前
奋斗的盼柳完成签到 ,获得积分10
8秒前
9秒前
Jasper应助handsomecat采纳,获得10
9秒前
9秒前
李雪完成签到,获得积分10
10秒前
10秒前
sv发布了新的文献求助10
12秒前
小田完成签到,获得积分10
12秒前
茶茶完成签到,获得积分20
12秒前
苏兴龙完成签到,获得积分10
12秒前
坚强的亦云-333完成签到,获得积分10
12秒前
Ava应助dan1029采纳,获得10
13秒前
13秒前
13秒前
奶糖最可爱完成签到,获得积分10
14秒前
14秒前
mojomars发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794