Semidecoupled decomposition-based fractional-order variational model for low-light enhancement

颜色恒定性 人工智能 计算机科学 计算机视觉 能见度 图像质量 图像增强 直方图 图像(数学) 过程(计算) 模式识别(心理学) 光学 物理 操作系统
作者
Bao Chen,Xiaohua Ding,Boying Wu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (06)
标识
DOI:10.1117/1.jei.31.6.063002
摘要

Low-light enhancement is an important technique for improving image quality. This is because low-light enhancement is expected to improve image visibility while maintaining visual naturalness of the image. In recent years, many methods have been researched to enhance low-light images, including histogram-based, fusion-based, and learning-based methods. The most representative and widely used low-light image enhancement method is the so-called Retinex-based method. However, they tend to have many limitations. The limitations of the Retinex-based method are as follows. (1) Due to strong imaging noise or less-effective image decomposition, this results in a large number of artifacts in the enhanced results. (2) Although the first problem can be partially solved by exploring prior information, it often complicates the optimization process. (3) Small-magnitude details are often lost in enhanced results. To overcome these drawbacks, we propose a model called the fractional-order Retinex model. At the same time, Retinex images are decomposed in an effective semidecoupled way. More concretely, the illumination layer T is gradually estimated only with the observed image S based on the proposed variation model, whereas the reflectance layer R is jointly estimated by the intermediate T and S. Experimental results demonstrate the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123xmc发布了新的文献求助10
刚刚
怡然思萱发布了新的文献求助20
刚刚
baimo完成签到,获得积分10
刚刚
诩阽完成签到,获得积分10
1秒前
Spring完成签到,获得积分10
1秒前
胡茶茶完成签到 ,获得积分10
1秒前
文静的柚子完成签到,获得积分10
1秒前
情怀应助12采纳,获得10
2秒前
丰富的雪糕完成签到,获得积分10
2秒前
SciGPT应助zy采纳,获得10
2秒前
量子星尘发布了新的文献求助20
2秒前
英俊的铭应助Du采纳,获得10
2秒前
loogn7发布了新的文献求助10
3秒前
小马甲应助杨衡采纳,获得10
4秒前
桐桐应助普鲁卡因采纳,获得10
4秒前
4秒前
wuhoo完成签到,获得积分10
4秒前
yihua完成签到,获得积分20
4秒前
万能图书馆应助fool采纳,获得10
4秒前
追风少年发布了新的文献求助10
4秒前
orixero应助张正采纳,获得10
5秒前
Mid完成签到 ,获得积分10
5秒前
你好棒呀完成签到,获得积分10
5秒前
hume完成签到,获得积分10
6秒前
禾研完成签到,获得积分10
6秒前
wenlongliu完成签到,获得积分10
6秒前
光亮妙之完成签到,获得积分10
7秒前
顺利毕业完成签到,获得积分10
7秒前
7秒前
7秒前
Zyyyyyy完成签到,获得积分10
7秒前
灵光一闪完成签到,获得积分10
7秒前
小柠檬完成签到,获得积分20
8秒前
ZMZ发布了新的文献求助30
8秒前
8秒前
8秒前
天天快乐应助Funeral采纳,获得10
8秒前
泡面完成签到 ,获得积分10
8秒前
smr完成签到,获得积分10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017