亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Semidecoupled decomposition-based fractional-order variational model for low-light enhancement

颜色恒定性 人工智能 计算机科学 计算机视觉 能见度 图像质量 图像增强 直方图 图像(数学) 过程(计算) 模式识别(心理学) 光学 物理 操作系统
作者
Bao Chen,Xiaohua Ding,Boying Wu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (06)
标识
DOI:10.1117/1.jei.31.6.063002
摘要

Low-light enhancement is an important technique for improving image quality. This is because low-light enhancement is expected to improve image visibility while maintaining visual naturalness of the image. In recent years, many methods have been researched to enhance low-light images, including histogram-based, fusion-based, and learning-based methods. The most representative and widely used low-light image enhancement method is the so-called Retinex-based method. However, they tend to have many limitations. The limitations of the Retinex-based method are as follows. (1) Due to strong imaging noise or less-effective image decomposition, this results in a large number of artifacts in the enhanced results. (2) Although the first problem can be partially solved by exploring prior information, it often complicates the optimization process. (3) Small-magnitude details are often lost in enhanced results. To overcome these drawbacks, we propose a model called the fractional-order Retinex model. At the same time, Retinex images are decomposed in an effective semidecoupled way. More concretely, the illumination layer T is gradually estimated only with the observed image S based on the proposed variation model, whereas the reflectance layer R is jointly estimated by the intermediate T and S. Experimental results demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
lan完成签到,获得积分10
4秒前
陈同学完成签到 ,获得积分10
8秒前
lan发布了新的文献求助10
8秒前
chen完成签到 ,获得积分10
19秒前
sci2025opt完成签到 ,获得积分10
23秒前
siv完成签到,获得积分10
45秒前
科研通AI6应助懦弱的丹秋采纳,获得10
53秒前
科研兵发布了新的文献求助10
59秒前
天天快乐应助shee采纳,获得10
1分钟前
搜集达人应助科研兵采纳,获得10
1分钟前
insomnia417完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
朴素易梦发布了新的文献求助30
3分钟前
3分钟前
3分钟前
4分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
bkagyin应助科研通管家采纳,获得10
5分钟前
聪明的云完成签到 ,获得积分10
5分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
朴素易梦完成签到,获得积分10
6分钟前
小马甲应助John采纳,获得10
7分钟前
kuoping完成签到,获得积分0
7分钟前
7分钟前
John完成签到,获得积分10
7分钟前
John发布了新的文献求助10
7分钟前
Ji完成签到,获得积分10
8分钟前
阔达白凡完成签到,获得积分10
8分钟前
桥西小河完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596189
求助须知:如何正确求助?哪些是违规求助? 4008262
关于积分的说明 12409027
捐赠科研通 3687193
什么是DOI,文献DOI怎么找? 2032271
邀请新用户注册赠送积分活动 1065522
科研通“疑难数据库(出版商)”最低求助积分说明 950827