Semidecoupled decomposition-based fractional-order variational model for low-light enhancement

颜色恒定性 人工智能 计算机科学 计算机视觉 能见度 图像质量 图像增强 直方图 图像(数学) 过程(计算) 模式识别(心理学) 光学 物理 操作系统
作者
Bao Chen,Xiaohua Ding,Boying Wu
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:31 (06)
标识
DOI:10.1117/1.jei.31.6.063002
摘要

Low-light enhancement is an important technique for improving image quality. This is because low-light enhancement is expected to improve image visibility while maintaining visual naturalness of the image. In recent years, many methods have been researched to enhance low-light images, including histogram-based, fusion-based, and learning-based methods. The most representative and widely used low-light image enhancement method is the so-called Retinex-based method. However, they tend to have many limitations. The limitations of the Retinex-based method are as follows. (1) Due to strong imaging noise or less-effective image decomposition, this results in a large number of artifacts in the enhanced results. (2) Although the first problem can be partially solved by exploring prior information, it often complicates the optimization process. (3) Small-magnitude details are often lost in enhanced results. To overcome these drawbacks, we propose a model called the fractional-order Retinex model. At the same time, Retinex images are decomposed in an effective semidecoupled way. More concretely, the illumination layer T is gradually estimated only with the observed image S based on the proposed variation model, whereas the reflectance layer R is jointly estimated by the intermediate T and S. Experimental results demonstrate the effectiveness of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
smm发布了新的文献求助10
刚刚
lsw发布了新的文献求助10
刚刚
Mira完成签到,获得积分10
1秒前
1秒前
1秒前
bkagyin应助王心桐采纳,获得10
1秒前
领导范儿应助why采纳,获得10
2秒前
2秒前
Hello应助yr888采纳,获得10
2秒前
SciGPT应助小菜狗采纳,获得10
3秒前
linya发布了新的文献求助10
3秒前
3秒前
IMP完成签到 ,获得积分10
3秒前
loststarts完成签到 ,获得积分10
3秒前
zly完成签到,获得积分10
4秒前
4秒前
两句话发布了新的文献求助210
4秒前
寒冷板栗完成签到,获得积分10
5秒前
lsw完成签到,获得积分10
5秒前
yilin完成签到 ,获得积分10
5秒前
5秒前
6秒前
6秒前
123发布了新的文献求助10
6秒前
Hello应助wxt采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
大模型应助未来采纳,获得30
8秒前
8秒前
霍师傅发布了新的文献求助10
8秒前
齐婷婷发布了新的文献求助10
8秒前
尤川完成签到,获得积分10
9秒前
9秒前
hope完成签到,获得积分10
9秒前
9秒前
一一应助科研通管家采纳,获得10
9秒前
buno应助科研通管家采纳,获得10
9秒前
djshao应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609888
求助须知:如何正确求助?哪些是违规求助? 4694483
关于积分的说明 14882481
捐赠科研通 4720586
什么是DOI,文献DOI怎么找? 2544960
邀请新用户注册赠送积分活动 1509797
关于科研通互助平台的介绍 1473002