Semidecoupled decomposition-based fractional-order variational model for low-light enhancement

颜色恒定性 人工智能 计算机科学 计算机视觉 能见度 图像质量 图像增强 直方图 图像(数学) 过程(计算) 模式识别(心理学) 光学 物理 操作系统
作者
Bao Chen,Xiaohua Ding,Boying Wu
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (06)
标识
DOI:10.1117/1.jei.31.6.063002
摘要

Low-light enhancement is an important technique for improving image quality. This is because low-light enhancement is expected to improve image visibility while maintaining visual naturalness of the image. In recent years, many methods have been researched to enhance low-light images, including histogram-based, fusion-based, and learning-based methods. The most representative and widely used low-light image enhancement method is the so-called Retinex-based method. However, they tend to have many limitations. The limitations of the Retinex-based method are as follows. (1) Due to strong imaging noise or less-effective image decomposition, this results in a large number of artifacts in the enhanced results. (2) Although the first problem can be partially solved by exploring prior information, it often complicates the optimization process. (3) Small-magnitude details are often lost in enhanced results. To overcome these drawbacks, we propose a model called the fractional-order Retinex model. At the same time, Retinex images are decomposed in an effective semidecoupled way. More concretely, the illumination layer T is gradually estimated only with the observed image S based on the proposed variation model, whereas the reflectance layer R is jointly estimated by the intermediate T and S. Experimental results demonstrate the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助守得云开见月明采纳,获得10
1秒前
Hermione完成签到,获得积分10
1秒前
Echan发布了新的文献求助10
1秒前
小马甲应助11采纳,获得10
1秒前
边宇发布了新的文献求助10
1秒前
李大大完成签到,获得积分20
2秒前
Zhusy发布了新的文献求助10
3秒前
充电宝应助牂牂采纳,获得10
3秒前
浮游应助浪子采纳,获得10
4秒前
共享精神应助乐融融1采纳,获得10
4秒前
学术小白发布了新的文献求助10
4秒前
5秒前
无花果应助spring采纳,获得10
5秒前
YY完成签到,获得积分10
6秒前
7秒前
Jasper应助跳跃的静曼采纳,获得10
7秒前
hy完成签到,获得积分10
8秒前
8秒前
9秒前
冷艳访枫完成签到,获得积分10
9秒前
Lucien完成签到,获得积分10
9秒前
10秒前
10秒前
景行行止发布了新的文献求助10
10秒前
kk完成签到 ,获得积分10
11秒前
领导范儿应助嘉平三十采纳,获得10
11秒前
12秒前
真的橘子发布了新的文献求助20
12秒前
搜集达人应助学术小白采纳,获得10
13秒前
13秒前
eddie发布了新的文献求助10
14秒前
古木发布了新的文献求助10
15秒前
15秒前
科研通AI2S应助郑嘻嘻采纳,获得10
15秒前
orixero应助123456采纳,获得10
15秒前
石烟祝完成签到,获得积分10
16秒前
16秒前
酷波er应助不建在的牛马采纳,获得10
16秒前
tianzuo发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286206
求助须知:如何正确求助?哪些是违规求助? 4439117
关于积分的说明 13820017
捐赠科研通 4320822
什么是DOI,文献DOI怎么找? 2371606
邀请新用户注册赠送积分活动 1367203
关于科研通互助平台的介绍 1330636