Endmember Bundle Extraction Based on Improved Multiobjective Particle Swarm Optimization

端元 高光谱成像 粒子群优化 模式识别(心理学) 人工智能 数学 集合(抽象数据类型) 计算机科学 特征提取 数据集 算法 程序设计语言
作者
Rong Liu,Pengrui Wang,Bo Du,Boyang Qu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:20: 1-5 被引量:4
标识
DOI:10.1109/lgrs.2023.3287919
摘要

Endmember extraction (EE) is a key task for hyperspectral image unmixing. The majority of EE algorithms extract only one pure spectrum for each class of material, which may lead to a large unmixing error in cases of spectral variability. Endmember bundle extraction (EBE), which identifies a set of endmembers representing the spectral variability within each class, has been developed to solve the spectral variability problem. To date, only a small number of EBE methods have been developed; moreover, these approaches mainly employ traditional convex-geometry-based EE methods to extract endmember bundles from subset data, which may result in the loss of some endmembers and an incomplete endmember bundle set. This paper proposes an improved multi-objective particle swarm optimization method for the identification of multiple endmember bundles, named IMPSO-EBE. The proposed approach follows the framework of the spatial-spectral EBE (SSEBE) method, which extracts endmember candidates first and then applies post-processing to remove redundant endmembers. However, unlike the SSEBE method, which uses the traditional pixel purity index (PPI) method to obtain candidate endmembers from single feature space, IMPSO-EBE proposes to cooperate across multiple dataspaces to obtain candidate endmembers based on multi-objective particle swarm optimization, making it able to extract candidate endmembers that cannot be identified in single feature space. We compare the performance of the proposed method with that of the single dataspace-based endmember bundle extraction methods using two real hyperspectral datasets. Results show that the endmember bundles identified by the proposed method are more complete than those of the comparison method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助文献搬运工采纳,获得10
刚刚
1秒前
bin完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
2秒前
wangzh完成签到,获得积分10
2秒前
2秒前
3秒前
长风完成签到,获得积分10
3秒前
充电宝应助Mia采纳,获得10
3秒前
沉默的企鹅完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
罗嘉尔发布了新的文献求助10
6秒前
李思发布了新的文献求助10
7秒前
小王完成签到,获得积分10
7秒前
7秒前
熊博士完成签到,获得积分10
7秒前
wangzh发布了新的文献求助30
8秒前
舒适静曼完成签到,获得积分10
8秒前
科学家发布了新的文献求助10
9秒前
坦率的傥完成签到,获得积分10
9秒前
Alice完成签到,获得积分10
9秒前
务实大船发布了新的文献求助10
10秒前
大力雨柏发布了新的文献求助10
10秒前
loomsis完成签到,获得积分10
10秒前
认真子默完成签到,获得积分10
10秒前
渔民发布了新的文献求助10
11秒前
11秒前
奋斗小鸽子完成签到,获得积分20
11秒前
lalala应助YYY采纳,获得10
13秒前
loomsis发布了新的文献求助10
13秒前
14秒前
打工人发布了新的文献求助30
14秒前
18秒前
FashionBoy应助奋斗小鸽子采纳,获得10
18秒前
烟花应助淡然的香薇采纳,获得30
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239