Understanding G-Quadruplex Biology and Stability Using Single-Molecule Techniques

磁镊 费斯特共振能量转移 解旋酶 G-四倍体 力谱学 纳米技术 生物物理学 计算生物学 化学 DNA 生物 原子力显微镜 荧光 物理 材料科学 生物化学 基因 核糖核酸 量子力学
作者
Nicholas Kusi-Appauh,Stephen F. Ralph,Antoine M. van Oijen,Lisanne M. Spenkelink
出处
期刊:Journal of Physical Chemistry B [American Chemical Society]
卷期号:127 (25): 5521-5540 被引量:7
标识
DOI:10.1021/acs.jpcb.3c01708
摘要

The link between the chemical stability of G-quadruplex (qDNA) structures and their roles in eukaryotic genomic maintenance processes has been an area of interest now for several decades. This Review seeks to demonstrate how single-molecule force-based techniques can provide insight into the mechanical stabilities of a variety of qDNA structures as well as their ability to interconvert between different conformations under conditions of stress. Atomic force microscopy (AFM) and magnetic and optical tweezers have been the primary tools used in these investigations and have been used to examine both free and ligand-stabilized G-quadruplex structures. These studies have shown that the degree of stabilization of G-quadruplex structures has a significant effect on the ability of nuclear machinery to bypass these roadblocks on DNA strands. This Review will illustrate how various cellular components including replication protein A (RPA), Bloom syndrome protein (BLM), and Pif1 helicases are capable of unfolding qDNA. Techniques such as single-molecule fluorescence resonance energy transfer (smFRET), often in conjunction with the aforementioned force-based techniques, have proven extremely effective at elucidating the factors underpinning the mechanisms by which these proteins unwind qDNA structures. We will provide insight into how single-molecule tools have facilitated the direct visualization of qDNA roadblocks and also showcase results obtained from experiments designed to examine the ability of G-quadruplexes to limit the access of specific cellular proteins normally associated with telomeres.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助mensa采纳,获得10
1秒前
脑洞疼应助CC0113采纳,获得500
2秒前
斯文败类应助吕亚采纳,获得10
2秒前
3秒前
邹晓双完成签到,获得积分10
3秒前
3秒前
渣155136发布了新的文献求助10
4秒前
思源应助panfan采纳,获得10
4秒前
Owen应助FJ采纳,获得10
4秒前
猪小猪完成签到,获得积分10
4秒前
mmyhn应助甜蜜寄文采纳,获得20
5秒前
5秒前
布鲁鲁完成签到,获得积分10
5秒前
5秒前
FceEar发布了新的文献求助10
6秒前
6秒前
flypipidan完成签到,获得积分10
6秒前
塔图姆发布了新的文献求助10
6秒前
CipherSage应助majf采纳,获得10
7秒前
7秒前
sinan完成签到,获得积分10
8秒前
8秒前
高高烨磊完成签到,获得积分10
8秒前
happy123完成签到,获得积分10
9秒前
hui发布了新的文献求助10
9秒前
ttttttt发布了新的文献求助10
9秒前
10秒前
森屿发布了新的文献求助10
11秒前
11秒前
scoredemon发布了新的文献求助10
11秒前
现代的冰珍完成签到,获得积分10
11秒前
酷波er应助ml采纳,获得10
11秒前
shelly完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
13秒前
13秒前
情木花肆发布了新的文献求助10
13秒前
欢呼怜烟发布了新的文献求助10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546979
求助须知:如何正确求助?哪些是违规求助? 3123961
关于积分的说明 9357531
捐赠科研通 2822555
什么是DOI,文献DOI怎么找? 1551574
邀请新用户注册赠送积分活动 723561
科研通“疑难数据库(出版商)”最低求助积分说明 713801