清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Graphic Intelligent Diagnosis of Hypoxic-Ischemic Encephalopathy Using MRI-Based Deep Learning Model

列线图 逻辑回归 医学 缺氧缺血性脑病 人工智能 机器学习 脑病 计算机科学 内科学
作者
Tian Tian,Tongjia Gan,Jun Chen,Jun Lu,Guiling Zhang,Yiran Zhou,Jia Li,Haoyue Shao,Yufei Liu,Hongquan Zhu,Di Wu,Chengcheng Jiang,Jianbo Shao,Jingjing Shi,Wenzhong Yang,Wenzhen Zhu
出处
期刊:Neonatology [S. Karger AG]
卷期号:120 (4): 441-449 被引量:5
标识
DOI:10.1159/000530352
摘要

Heterogeneous MRI manifestations restrict the efficiency and consistency of neuroradiologists in diagnosing hypoxic-ischemic encephalopathy (HIE) due to complex injury patterns. This study aimed to develop and validate an intelligent HIE identification model (termed as DLCRN, deep learning clinical-radiomics nomogram) based on conventional structural MRI and clinical characteristics.In this retrospective case-control study, full-term neonates with HIE and healthy controls were collected in two different medical centers from January 2015 to December 2020. Multivariable logistic regression analysis was implemented to establish the DLCRN model based on conventional MRI sequences and clinical characteristics. Discrimination, calibration, and clinical applicability were used to evaluate the model in the training and validation cohorts. Grad-class activation map algorithm was implemented to visualize the DLCRN.186 HIE patients and 219 healthy controls were assigned to the training, internal validation, and independent validation cohorts. Birthweight was incorporated with deep radiomics signatures to create the final DLCRN model. The DLCRN model achieved better discriminatory power than simple radiomics models, with an area under the curve (AUC) of 0.868, 0.813, and 0.798 in the training, internal validation, and independent validation cohorts, respectively. The DLCRN model was well calibrated and has clinical potential. Visualization of the DLCRN highlighted the lesion areas that conformed to radiological identification.Visualized DLCRN may be a useful tool in the objective and quantitative identification of HIE. Scientific application of the optimized DLCRN model may save time for screening early mild HIE, improve the consistency of HIE diagnosis, and guide timely clinical management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助苑阿宇采纳,获得10
16秒前
19秒前
21秒前
founder完成签到,获得积分10
25秒前
founder发布了新的文献求助10
27秒前
30秒前
苑阿宇发布了新的文献求助10
35秒前
thchiang完成签到 ,获得积分10
1分钟前
FashionBoy应助lourahan采纳,获得10
1分钟前
1分钟前
RZH完成签到,获得积分10
1分钟前
1分钟前
慕青应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
lourahan发布了新的文献求助10
1分钟前
幽默梦之完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分10
2分钟前
3分钟前
3分钟前
霍霍完成签到 ,获得积分10
3分钟前
3分钟前
孤独的大灰狼完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
caroline完成签到 ,获得积分10
4分钟前
4分钟前
赘婿应助百里幻竹采纳,获得10
4分钟前
5分钟前
百里幻竹发布了新的文献求助10
5分钟前
Ji完成签到,获得积分10
5分钟前
科研小白白白完成签到,获得积分10
7分钟前
Alisha完成签到,获得积分10
7分钟前
共享精神应助苑阿宇采纳,获得10
7分钟前
乐乐应助keairui采纳,获得10
7分钟前
7分钟前
keairui发布了新的文献求助10
7分钟前
Krim完成签到 ,获得积分10
7分钟前
7分钟前
隐形曼青应助科研通管家采纳,获得30
7分钟前
8分钟前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3463632
求助须知:如何正确求助?哪些是违规求助? 3057036
关于积分的说明 9055232
捐赠科研通 2746957
什么是DOI,文献DOI怎么找? 1507180
科研通“疑难数据库(出版商)”最低求助积分说明 696451
邀请新用户注册赠送积分活动 695956