WMSA 2: a multiple DNA/RNA sequence alignment tool implemented with accurate progressive mode and a fast win-win mode combining the center star and progressive strategies

计算机科学 多序列比对 数据挖掘 聚类分析 序列(生物学) 启发式 树(集合论) 算法 自由序列分析 模式(计算机接口) 明星(博弈论) 过程(计算) 排名(信息检索) 动态规划 序列比对 模式识别(心理学) 人工智能 数学 数学分析 生物化学 化学 遗传学 生物 肽序列 基因 操作系统
作者
Juntao Chen,Jiannan Chao,Huan Liu,Fenglong Yang,Quan Zou,Furong Tang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (4) 被引量:5
标识
DOI:10.1093/bib/bbad190
摘要

Abstract Multiple sequence alignment is widely used for sequence analysis, such as identifying important sites and phylogenetic analysis. Traditional methods, such as progressive alignment, are time-consuming. To address this issue, we introduce StarTree, a novel method to fast construct a guide tree by combining sequence clustering and hierarchical clustering. Furthermore, we develop a new heuristic similar region detection algorithm using the FM-index and apply the k-banded dynamic program to the profile alignment. We also introduce a win-win alignment algorithm that applies the central star strategy within the clusters to fast the alignment process, then uses the progressive strategy to align the central-aligned profiles, guaranteeing the final alignment's accuracy. We present WMSA 2 based on these improvements and compare the speed and accuracy with other popular methods. The results show that the guide tree made by the StarTree clustering method can lead to better accuracy than that of PartTree while consuming less time and memory than that of UPGMA and mBed methods on datasets with thousands of sequences. During the alignment of simulated data sets, WMSA 2 can consume less time and memory while ranking at the top of Q and TC scores. The WMSA 2 is still better at the time, and memory efficiency on the real datasets and ranks at the top on the average sum of pairs score. For the alignment of 1 million SARS-CoV-2 genomes, the win-win mode of WMSA 2 significantly decreased the consumption time than the former version. The source code and data are available at https://github.com/malabz/WMSA2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
shilong.yang完成签到,获得积分10
1秒前
jy发布了新的文献求助10
2秒前
3秒前
3秒前
梦里发布了新的文献求助10
4秒前
falcon完成签到 ,获得积分10
5秒前
劈里啪啦发布了新的文献求助10
6秒前
耿强发布了新的文献求助10
6秒前
科研通AI5应助坚强的樱采纳,获得10
6秒前
陈杰发布了新的文献求助10
6秒前
nozero完成签到,获得积分10
8秒前
澜生发布了新的文献求助10
9秒前
在水一方应助惠惠采纳,获得10
9秒前
852应助zZ采纳,获得10
9秒前
小马甲应助陌路采纳,获得10
10秒前
1335804518完成签到 ,获得积分10
11秒前
11秒前
甜甜醉波完成签到,获得积分10
11秒前
科研通AI2S应助卷卷王采纳,获得10
12秒前
可爱的函函应助梦里采纳,获得10
12秒前
沐晴完成签到,获得积分10
13秒前
入夏完成签到,获得积分10
13秒前
13秒前
13秒前
苏州小北发布了新的文献求助10
14秒前
14秒前
snail完成签到,获得积分10
15秒前
劈里啪啦完成签到,获得积分10
15秒前
wanci应助Jasmine采纳,获得10
16秒前
aoxiangcaizi12完成签到,获得积分10
16秒前
ding应助通~采纳,获得30
17秒前
18秒前
Annie发布了新的文献求助10
18秒前
晨曦完成签到,获得积分10
19秒前
十一发布了新的文献求助10
19秒前
顾矜应助Peter采纳,获得30
20秒前
Ayanami完成签到,获得积分10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794