炎症
医学
体内
心肌梗塞
纤维化
心功能曲线
内科学
药理学
心力衰竭
生物
生物技术
作者
Xuewen Duan,Meiling Hu,Lu Yang,Zhang Sheng,Bo Wang,Tong Li,Yong Tan,Yingke Li,Xingguang Liu,Zhenlin Zhan
标识
DOI:10.1016/j.bcp.2023.115614
摘要
Acute myocardial infarction (MI) and chemotherapeutic drug administration can induce myocardial damage and cardiomyocyte cell death, and trigger the release of damage-associated molecular patterns (DAMPs) that initiate the aseptic inflammatory response. The moderate inflammatory response is beneficial for repairing damaged myocardium, while an excessive inflammatory response exacerbates myocardial injury, promotes scar formation, and results in a poor prognosis of cardiac diseases. Immune responsive gene 1 (IRG1) is specifically highly expressed in activated macrophages and mediates the production of tricarboxylic acid (TCA) cycle metabolite itaconate. However, the role of IRG1 in the inflammation and myocardial injury of cardiac stress-related diseases remains unknown. Here, we found that IRG1 knockout mice exhibited increased cardiac tissue inflammation and infarct size, aggravated myocardial fibrosis, and impaired cardiac function after MI and in vivo doxorubicin (Dox) administration. Mechanically, IRG1 deficiency enhanced the production of IL-6 and IL-1β by suppressing the nuclear factor red lineage 2-related factor 2 (NRF2) and activating transcription factor 3 (ATF3) pathway in cardiac macrophages. Importantly, 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, reversed the inhibited expression of NRF2 and ATF3 caused by IRG1 deficiency. Moreover, in vivo 4-OI administration inhibited the cardiac inflammation and fibrosis, and prevented adverse ventricle remodeling in IRG1 knockout mice with MI or Dox-induced myocardial injury. Our study uncovers the critical protective role of IRG1 in suppressing inflammation and preventing cardiac dysfunction under ischemic or toxic injury conditions, providing a potential target for the treatment of myocardial injury.
科研通智能强力驱动
Strongly Powered by AbleSci AI