Construction and Statistical Analysis of Discourse Cohesive Components in Modern Chinese

统计分析 语言学 语篇分析 计算机科学 数学 哲学 统计
作者
Jing‐Yi Wang,Endong Xun
出处
期刊:International Journal of Asian Language Processing [World Scientific]
卷期号:33 (04)
标识
DOI:10.1142/s271755452350025x
摘要

In discourse semantic analysis, the primary focus lies on cohesive elements that maintain discourse coherence. Additionally, attention is given to referring components and topic description structures that facilitate articulation. Various terms are used to refer to these cohesive elements, such as connecting components, logical connectives, relational words and cohesive components. However, there is a lack of unified terminology. The concept of cohesive components has been proposed before. In prior research, it primarily encompassed connectives, discourse markers and tone words, all of which contribute to discourse coherence. However, these definitions were relatively imprecise, and previous studies did not systematically categorize discourse cohesive components based on specific semantic functions. Consequently, they were inadequate for chapter-level semantic analysis. This paper extends the definition and scope of cohesive components based on existing research. It categorizes cohesive components according to both their formal characteristics and semantic functions. We extract cohesive components from the BLCU-CST tree bank, filter them based on specific scope and definition, and summarize a total of 247 logical connectives, 118 discourse connective markers and six types of numerical sequence connectives. In terms of semantic function, we analyze the distribution of 14 different logical-semantic relations that cohesive components indicate within discourse. This analysis not only enriches the understanding of discourse semantics for natural language comprehension but also offers valuable insights for linguistic ontology research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FOREST完成签到,获得积分20
刚刚
大厉害完成签到,获得积分10
1秒前
果冻呀发布了新的文献求助10
1秒前
2秒前
西西发布了新的文献求助10
2秒前
Luka完成签到,获得积分10
3秒前
魔幻的凤凰完成签到,获得积分10
3秒前
左眼天堂完成签到,获得积分10
3秒前
4秒前
5秒前
温柔的傲霜完成签到,获得积分10
5秒前
龙仔发布了新的文献求助10
6秒前
FOD完成签到 ,获得积分10
7秒前
8秒前
8秒前
leiqin发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
淳于含芙完成签到,获得积分10
8秒前
10秒前
TS完成签到,获得积分10
10秒前
Criminology34应助现代的澜采纳,获得10
11秒前
Orange应助昏睡的桐采纳,获得30
12秒前
leiqin完成签到,获得积分10
13秒前
西瓜完成签到 ,获得积分10
13秒前
14秒前
日暮倚修竹完成签到,获得积分10
14秒前
pho完成签到,获得积分20
14秒前
尼古拉斯佩奇完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
青木瓜子完成签到 ,获得积分10
17秒前
DDIAO发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
18秒前
19秒前
简一完成签到,获得积分10
19秒前
Fannie完成签到,获得积分10
21秒前
淳于含芙发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5708988
求助须知:如何正确求助?哪些是违规求助? 5191995
关于积分的说明 15255588
捐赠科研通 4861880
什么是DOI,文献DOI怎么找? 2609733
邀请新用户注册赠送积分活动 1560175
关于科研通互助平台的介绍 1517941