A Machine Learning approach to identify groups of patients with hematological malignant disorders

人工智能 机器学习 接种疫苗 支持向量机 杠杆(统计) 主成分分析 人口 医学 星团(航天器) 2019年冠状病毒病(COVID-19) 计算机科学 内科学 免疫学 环境卫生 疾病 传染病(医学专业) 程序设计语言
作者
Pablo Rodríguez-Belenguer,José Luís Piñana,Manuel Sánchez-Montañés,Emilio Soria‐Olivas,Marcelino Martı́nez-Sober,Antonio J. Serrano-López
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:: 108011-108011 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108011
摘要

The study addresses the need for strong vaccine-induced antibodies against SARS-CoV-2 in immunocompromised hematological malignancy (HM) patients to reduce COVID-19 severity. Despite vaccination efforts, over a third of HM patients remain unresponsive, increasing their risk of severe breakthrough infections. The study aims to leverage machine learning's adaptability to COVID-19 dynamics, efficiently selecting patient-specific features to enhance predictions and improve healthcare strategies. Emphasizing the complex COVID-hematology connection, the focus is on interpretable machine learning to provide valuable insights to clinicians and biologists. The study evaluated a dataset with more than 1600 patients with hematological diseases. The output was the achievement or non-achievement of a serological response after full COVID-19 vaccination. Various machine learning methods were applied, with the best model selected based on metrics like Area Under the Curve (AUC) score, Sensitivity, Specificity, and Matthew Correlation Coefficient (MCC). Individual SHAP values were obtained for the best model, and principal component analysis (PCA) was applied to these values. The patient profiles were then analyzed within identified clusters. Support vector machine (SVM) emerged as the best-performing model. PCA applied to SVM-derived SHAP values resulted in four perfectly separated clusters. These clusters, ordered by the probability of generating antibodies. The clusters were characterized by their respective probabilities. Cluster 1, with the second-highest probability (69.91%), included patients with aggressive diseases and factors contributing to increased immunodeficiency. Cluster 2 had the lowest likelihood (33.3%), but the small sample size limited conclusive findings. Cluster 3, representing the majority of the population, exhibited a high rate of antibody generation (84.39%) and a better prognosis compared to Cluster 1. Cluster 4, with a probability of 66.33%, included patients with B-cell non-Hodgkin's lymphoma on corticosteroid therapy. The methodology successfully identified four separate clusters of HM patients based on their likelihood of generating antibodies after COVID-19 vaccination. The study suggests the methodology's potential applicability to other diseases, highlighting the importance of interpretable ML in healthcare research and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwww完成签到 ,获得积分10
刚刚
鱼仔发布了新的文献求助10
刚刚
Wu完成签到 ,获得积分10
刚刚
duduguai完成签到,获得积分10
刚刚
ISLAND完成签到,获得积分10
1秒前
zoey完成签到,获得积分20
3秒前
火星上的酸奶完成签到,获得积分10
3秒前
通通发布了新的文献求助10
3秒前
xiaomaxia完成签到 ,获得积分10
3秒前
俏皮的老城完成签到 ,获得积分10
4秒前
zoey发布了新的文献求助10
5秒前
汉堡包应助Ronnie采纳,获得10
10秒前
10秒前
紧张的毛衣完成签到,获得积分10
13秒前
现代的访曼应助十米采纳,获得20
15秒前
烟花应助Cici采纳,获得10
15秒前
脑洞疼应助廉洁采纳,获得10
16秒前
有魅力的问儿完成签到,获得积分10
16秒前
16秒前
徐什么宝发布了新的文献求助10
17秒前
蜡笔完成签到,获得积分10
19秒前
陈严完成签到 ,获得积分10
20秒前
灵巧水绿应助积极的连虎采纳,获得10
20秒前
20秒前
21秒前
wang完成签到,获得积分10
21秒前
三颗石头发布了新的文献求助10
22秒前
NexusExplorer应助贪玩访文采纳,获得10
23秒前
YxxxF完成签到 ,获得积分10
24秒前
wang发布了新的文献求助10
25秒前
chen发布了新的文献求助10
26秒前
试尝胆大应助freedom313514采纳,获得20
27秒前
27秒前
28秒前
28秒前
mouset270发布了新的文献求助30
28秒前
29秒前
dddyl应助科研通管家采纳,获得10
29秒前
29秒前
Owen应助科研通管家采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993