A Machine Learning approach to identify groups of patients with hematological malignant disorders

人工智能 机器学习 接种疫苗 支持向量机 杠杆(统计) 主成分分析 人口 医学 星团(航天器) 2019年冠状病毒病(COVID-19) 计算机科学 内科学 免疫学 环境卫生 疾病 传染病(医学专业) 程序设计语言
作者
Pablo Rodríguez-Belenguer,José Luís Piñana,Manuel Sánchez-Montañés,Emilio Soria‐Olivas,Marcelino Martı́nez-Sober,Antonio J. Serrano-López
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:: 108011-108011 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108011
摘要

The study addresses the need for strong vaccine-induced antibodies against SARS-CoV-2 in immunocompromised hematological malignancy (HM) patients to reduce COVID-19 severity. Despite vaccination efforts, over a third of HM patients remain unresponsive, increasing their risk of severe breakthrough infections. The study aims to leverage machine learning's adaptability to COVID-19 dynamics, efficiently selecting patient-specific features to enhance predictions and improve healthcare strategies. Emphasizing the complex COVID-hematology connection, the focus is on interpretable machine learning to provide valuable insights to clinicians and biologists. The study evaluated a dataset with more than 1600 patients with hematological diseases. The output was the achievement or non-achievement of a serological response after full COVID-19 vaccination. Various machine learning methods were applied, with the best model selected based on metrics like Area Under the Curve (AUC) score, Sensitivity, Specificity, and Matthew Correlation Coefficient (MCC). Individual SHAP values were obtained for the best model, and principal component analysis (PCA) was applied to these values. The patient profiles were then analyzed within identified clusters. Support vector machine (SVM) emerged as the best-performing model. PCA applied to SVM-derived SHAP values resulted in four perfectly separated clusters. These clusters, ordered by the probability of generating antibodies. The clusters were characterized by their respective probabilities. Cluster 1, with the second-highest probability (69.91%), included patients with aggressive diseases and factors contributing to increased immunodeficiency. Cluster 2 had the lowest likelihood (33.3%), but the small sample size limited conclusive findings. Cluster 3, representing the majority of the population, exhibited a high rate of antibody generation (84.39%) and a better prognosis compared to Cluster 1. Cluster 4, with a probability of 66.33%, included patients with B-cell non-Hodgkin's lymphoma on corticosteroid therapy. The methodology successfully identified four separate clusters of HM patients based on their likelihood of generating antibodies after COVID-19 vaccination. The study suggests the methodology's potential applicability to other diseases, highlighting the importance of interpretable ML in healthcare research and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十八鱼完成签到,获得积分10
刚刚
哒哒完成签到,获得积分10
3秒前
冷漠的布丁完成签到,获得积分10
3秒前
6秒前
高高兴兴完成签到,获得积分10
8秒前
8秒前
迷路凌柏完成签到 ,获得积分10
8秒前
9秒前
852应助胡萝卜采纳,获得10
9秒前
lucky完成签到 ,获得积分10
10秒前
十药九茯苓完成签到,获得积分10
10秒前
冷傲秋发布了新的文献求助10
10秒前
Tonsil01完成签到,获得积分10
10秒前
11秒前
11秒前
英姑应助小巧的松思采纳,获得10
12秒前
不知完成签到 ,获得积分10
12秒前
胡萝卜完成签到 ,获得积分10
13秒前
自業自得完成签到 ,获得积分10
13秒前
小二郎应助鸢尾采纳,获得10
13秒前
14秒前
YEEze发布了新的文献求助10
14秒前
花火易逝发布了新的文献求助10
15秒前
NexusExplorer应助豆包采纳,获得10
15秒前
肚肚发布了新的文献求助10
18秒前
术师完成签到,获得积分10
20秒前
21秒前
tomato完成签到 ,获得积分10
21秒前
21秒前
FK7发布了新的文献求助10
22秒前
弥漫的橘发布了新的文献求助10
22秒前
明研完成签到,获得积分10
22秒前
kevinrnk完成签到,获得积分10
23秒前
思源应助XQQDD采纳,获得10
23秒前
abc完成签到 ,获得积分10
23秒前
25秒前
view发布了新的文献求助10
25秒前
花火易逝完成签到,获得积分10
25秒前
周丫丫完成签到,获得积分10
25秒前
26秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213267
求助须知:如何正确求助?哪些是违规求助? 4389144
关于积分的说明 13666133
捐赠科研通 4250090
什么是DOI,文献DOI怎么找? 2331905
邀请新用户注册赠送积分活动 1329586
关于科研通互助平台的介绍 1283167