A Machine Learning approach to identify groups of patients with hematological malignant disorders

人工智能 机器学习 接种疫苗 支持向量机 杠杆(统计) 主成分分析 人口 医学 星团(航天器) 2019年冠状病毒病(COVID-19) 计算机科学 内科学 免疫学 环境卫生 疾病 传染病(医学专业) 程序设计语言
作者
Pablo Rodríguez-Belenguer,José Luís Piñana,Manuel Sánchez-Montañés,Emilio Soria‐Olivas,Marcelino Martı́nez-Sober,Antonio J. Serrano-López
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 108011-108011 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108011
摘要

The study addresses the need for strong vaccine-induced antibodies against SARS-CoV-2 in immunocompromised hematological malignancy (HM) patients to reduce COVID-19 severity. Despite vaccination efforts, over a third of HM patients remain unresponsive, increasing their risk of severe breakthrough infections. The study aims to leverage machine learning's adaptability to COVID-19 dynamics, efficiently selecting patient-specific features to enhance predictions and improve healthcare strategies. Emphasizing the complex COVID-hematology connection, the focus is on interpretable machine learning to provide valuable insights to clinicians and biologists. The study evaluated a dataset with more than 1600 patients with hematological diseases. The output was the achievement or non-achievement of a serological response after full COVID-19 vaccination. Various machine learning methods were applied, with the best model selected based on metrics like Area Under the Curve (AUC) score, Sensitivity, Specificity, and Matthew Correlation Coefficient (MCC). Individual SHAP values were obtained for the best model, and principal component analysis (PCA) was applied to these values. The patient profiles were then analyzed within identified clusters. Support vector machine (SVM) emerged as the best-performing model. PCA applied to SVM-derived SHAP values resulted in four perfectly separated clusters. These clusters, ordered by the probability of generating antibodies. The clusters were characterized by their respective probabilities. Cluster 1, with the second-highest probability (69.91%), included patients with aggressive diseases and factors contributing to increased immunodeficiency. Cluster 2 had the lowest likelihood (33.3%), but the small sample size limited conclusive findings. Cluster 3, representing the majority of the population, exhibited a high rate of antibody generation (84.39%) and a better prognosis compared to Cluster 1. Cluster 4, with a probability of 66.33%, included patients with B-cell non-Hodgkin's lymphoma on corticosteroid therapy. The methodology successfully identified four separate clusters of HM patients based on their likelihood of generating antibodies after COVID-19 vaccination. The study suggests the methodology's potential applicability to other diseases, highlighting the importance of interpretable ML in healthcare research and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光谷发布了新的文献求助10
1秒前
公司账号2发布了新的文献求助10
1秒前
居家家发布了新的文献求助10
1秒前
HThree发布了新的文献求助30
2秒前
2秒前
2秒前
叶公子完成签到,获得积分10
2秒前
2秒前
谢佳霖发布了新的文献求助10
3秒前
3秒前
3秒前
打打应助阿毛采纳,获得10
4秒前
Yu发布了新的文献求助20
4秒前
范啦啦啦发布了新的文献求助10
4秒前
CHEN02完成签到 ,获得积分10
4秒前
Jasper应助徐盛龙采纳,获得10
6秒前
菠菜应助ll采纳,获得100
6秒前
无辜半仙完成签到,获得积分10
7秒前
7秒前
缥缈的淇发布了新的文献求助30
7秒前
7秒前
Zx_1993应助猪猪hero采纳,获得10
7秒前
8秒前
曦和完成签到,获得积分10
9秒前
双儿完成签到,获得积分10
9秒前
FashionBoy应助伶俐的觅海采纳,获得10
9秒前
奋斗土豆发布了新的文献求助10
10秒前
心心完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
酷波er应助keke采纳,获得10
11秒前
yiqi发布了新的文献求助10
12秒前
居家家完成签到,获得积分10
12秒前
彩色觅荷发布了新的文献求助10
12秒前
所所应助楚江南采纳,获得10
13秒前
czx完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5472888
求助须知:如何正确求助?哪些是违规求助? 4575120
关于积分的说明 14350464
捐赠科研通 4502441
什么是DOI,文献DOI怎么找? 2467176
邀请新用户注册赠送积分活动 1455104
关于科研通互助平台的介绍 1429273