A Machine Learning approach to identify groups of patients with hematological malignant disorders

人工智能 机器学习 接种疫苗 支持向量机 杠杆(统计) 主成分分析 人口 医学 星团(航天器) 2019年冠状病毒病(COVID-19) 计算机科学 内科学 免疫学 环境卫生 疾病 传染病(医学专业) 程序设计语言
作者
Pablo Rodríguez-Belenguer,José Luís Piñana,Manuel Sánchez-Montañés,Emilio Soria‐Olivas,Marcelino Martı́nez-Sober,Antonio J. Serrano-López
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:: 108011-108011 被引量:5
标识
DOI:10.1016/j.cmpb.2024.108011
摘要

The study addresses the need for strong vaccine-induced antibodies against SARS-CoV-2 in immunocompromised hematological malignancy (HM) patients to reduce COVID-19 severity. Despite vaccination efforts, over a third of HM patients remain unresponsive, increasing their risk of severe breakthrough infections. The study aims to leverage machine learning's adaptability to COVID-19 dynamics, efficiently selecting patient-specific features to enhance predictions and improve healthcare strategies. Emphasizing the complex COVID-hematology connection, the focus is on interpretable machine learning to provide valuable insights to clinicians and biologists. The study evaluated a dataset with more than 1600 patients with hematological diseases. The output was the achievement or non-achievement of a serological response after full COVID-19 vaccination. Various machine learning methods were applied, with the best model selected based on metrics like Area Under the Curve (AUC) score, Sensitivity, Specificity, and Matthew Correlation Coefficient (MCC). Individual SHAP values were obtained for the best model, and principal component analysis (PCA) was applied to these values. The patient profiles were then analyzed within identified clusters. Support vector machine (SVM) emerged as the best-performing model. PCA applied to SVM-derived SHAP values resulted in four perfectly separated clusters. These clusters, ordered by the probability of generating antibodies. The clusters were characterized by their respective probabilities. Cluster 1, with the second-highest probability (69.91%), included patients with aggressive diseases and factors contributing to increased immunodeficiency. Cluster 2 had the lowest likelihood (33.3%), but the small sample size limited conclusive findings. Cluster 3, representing the majority of the population, exhibited a high rate of antibody generation (84.39%) and a better prognosis compared to Cluster 1. Cluster 4, with a probability of 66.33%, included patients with B-cell non-Hodgkin's lymphoma on corticosteroid therapy. The methodology successfully identified four separate clusters of HM patients based on their likelihood of generating antibodies after COVID-19 vaccination. The study suggests the methodology's potential applicability to other diseases, highlighting the importance of interpretable ML in healthcare research and decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Okayoooooo发布了新的文献求助10
刚刚
Executor完成签到,获得积分10
1秒前
隐形曼青应助默默的枫叶采纳,获得30
1秒前
小王小王发布了新的文献求助10
2秒前
爆米花应助Levi李采纳,获得10
2秒前
汤博森发布了新的文献求助10
3秒前
3秒前
chunhuizhang完成签到,获得积分10
6秒前
长心发布了新的文献求助10
6秒前
keken完成签到,获得积分10
6秒前
123发布了新的文献求助10
7秒前
星辰大海应助搬砖打工人采纳,获得10
7秒前
8秒前
8秒前
英俊的铭应助kjbt采纳,获得10
12秒前
ff完成签到,获得积分10
12秒前
cm发布了新的文献求助10
13秒前
yuyuncai完成签到,获得积分10
13秒前
wschenau发布了新的文献求助10
14秒前
平安完成签到 ,获得积分10
14秒前
14秒前
今后应助善良吐司采纳,获得20
14秒前
14秒前
mona完成签到,获得积分10
15秒前
科研通AI2S应助魔幻山芙采纳,获得10
16秒前
大个应助科研通管家采纳,获得10
16秒前
鹿飞松应助科研通管家采纳,获得10
16秒前
orixero应助科研通管家采纳,获得10
16秒前
Hello应助科研通管家采纳,获得10
16秒前
田様应助科研通管家采纳,获得10
16秒前
鹿飞松应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
17秒前
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
Maestro_S应助科研通管家采纳,获得20
17秒前
17秒前
FashionBoy应助科研通管家采纳,获得10
17秒前
窝窝头应助科研通管家采纳,获得20
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136000
求助须知:如何正确求助?哪些是违规求助? 2786769
关于积分的说明 7779614
捐赠科研通 2443019
什么是DOI,文献DOI怎么找? 1298798
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870