Optimized ANN for LiFePO4 battery charge estimation using principal components based feature generation

电池(电) 荷电状态 电动汽车 计算机科学 人工神经网络 电压 工程类 汽车工程 人工智能 电气工程 功率(物理) 物理 量子力学
作者
Chaitali Mehta,Amit V. Sant,Paawan Sharma
标识
DOI:10.1016/j.geits.2024.100175
摘要

Electric vehicles (EVs) have gained prominence in the present energy transition scenario. Widespread adoption of EVs necessitates an accurate state of charge estimation (SoC) algorithm. Integrating predictive SoC estimations with smart charging strategies not only optimizes charging efficiency and grid reliability but also extends battery lifespan while continuously enhancing the accuracy of SoC predictions, marking a crucial milestone in sustainable electric vehicle technology. In this research study, machine learning methods, particularly Artificial Neural Networks (ANN), are employed for SoC estimation of LiFePO4 batteries, resulting in efficient and accurate estimation algorithms. The investigation first focuses on developing a custom-designed battery pack with 12V, 4Ah capacity with a facility for real-time data collection through a dedicated hardware setup. The voltage, current and open-circuit voltage of the battery are monitored with computerized battery analyzer. The battery temperature is sensed with a DHT22 temperature sensor interfaced with Raspberry Pi. Principal components are derived for the collected battery data set and analyzed for feature engineering. Three principal components were generated as input parameters for the developed ANN. Early Stopping for the ANN was also implemented to achieve faster convergence of the ANN. While considering eleven combinations for ten different optimizers loss function is minimized. Comparative analysis of hyperparameter tuning and optimizer selection revealed that the Adafactor optimizer with specific settings produced the best results with an RMSE value of 0.4083 and an R2 Score of 0.9998. The proposed algorithm was also implemented for two different types of datasets, a UDDS drive cycle and a standard cell-level dataset. The results obtained were in line with the results obtained with the ANN model developed based on the data collected from the developed experimental setup.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助三口采纳,获得10
1秒前
1秒前
君君发布了新的文献求助30
1秒前
1秒前
2秒前
轩辕沛柔发布了新的文献求助30
3秒前
英俊的铭应助一只东北鸟采纳,获得10
4秒前
4秒前
4秒前
华东少年完成签到,获得积分10
5秒前
所所应助君君采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
Shawn完成签到,获得积分10
8秒前
桂桂发布了新的文献求助80
8秒前
木目丶完成签到,获得积分20
8秒前
nyt完成签到,获得积分10
9秒前
10秒前
英姑应助CY88采纳,获得10
10秒前
10秒前
11秒前
Shawn发布了新的文献求助20
11秒前
科研通AI2S应助一棵草采纳,获得10
11秒前
Elvis关注了科研通微信公众号
12秒前
早睡早起完成签到,获得积分10
12秒前
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
风趣安青完成签到 ,获得积分10
14秒前
15秒前
哇哈哈完成签到,获得积分10
15秒前
三口发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
分子筛发布了新的文献求助10
17秒前
劲秉应助狂野的微笑采纳,获得20
18秒前
yang完成签到,获得积分10
20秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660183
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740958
捐赠科研通 2930892
什么是DOI,文献DOI怎么找? 1604709
邀请新用户注册赠送积分活动 757477
科研通“疑难数据库(出版商)”最低求助积分说明 734439