Multi-Binding Sites United in Covalent-Organic Frameworks (MSUCOF) for H2 Storage and Delivery at Room Temperature

氢气储存 重量分析 金属有机骨架 结合能 共价键 过渡金属 纳米技术 化学 材料科学 化学工程 物理化学 有机化学 物理 催化作用 工程类 吸附 核物理学
作者
Marcus Djokic,José L. Mendoza-Cortés
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:38 (5): 4711-4720
标识
DOI:10.1021/acs.energyfuels.3c04075
摘要

The storage of hydrogen gas (H2) has presented a significant challenge that has hindered its use as a fuel source for transportation. To meet the Department of Energy's ambitious goals of achieving 50 g L–1 volumetric and 6.5 wt % gravimetric uptake targets, material-based approaches are essential. Designing materials that can efficiently store hydrogen gas requires careful tuning of the interactions between gaseous H2 and the surface of the material. Metal–organic frameworks (MOFs) and covalent-organic frameworks (COFs) have emerged as promising materials due to their exceptionally high-surface areas and tuneable structures that can improve gas-framework interactions. However, weak binding enthalpies have limited the success of many current candidates, which fail to achieve even 10 g L–1 volumetric uptake at ambient temperatures. To overcome this challenge, we utilized quantum mechanical (QM)-based force fields (FFs) to investigate the uptake and binding enthalpies of three linkers chelated with seven different transition metals (TMs), including both precious metals (Pd and Pt) and first row TM (Co, Cu, Fe, Ni, and Mn), to design 24 different COFs in silico. By applying QM-based FF with grand canonical Monte Carlo from 0 to 700 bar and 298 K, we demonstrated that Co-, Ni-, Mn-, Fe-, Pd-, and Pt-based MSUCOFs can already achieve the Department of Energy's hydrogen storage targets for 2025. Surprisingly, the COFs that incorporated the more affordable and abundant first-row TM often outperformed the precious metals. This promising development brings us one step closer to realizing a hydrogen-based energy economy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈哈哈发布了新的文献求助10
刚刚
huangyikun完成签到,获得积分10
1秒前
1秒前
咳咳咳完成签到,获得积分10
1秒前
小二郎应助科研通管家采纳,获得10
2秒前
fd163c应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
郑方形发布了新的文献求助20
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
酷波er应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
MchemG应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
CAOHOU应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
爱撞墙的猫完成签到,获得积分10
4秒前
小马甲应助干雅柏采纳,获得10
4秒前
小晓完成签到,获得积分10
4秒前
becky发布了新的文献求助10
5秒前
jszhoucl发布了新的文献求助10
6秒前
星期八发布了新的文献求助10
6秒前
时有落花至完成签到,获得积分10
6秒前
6秒前
无与伦比发布了新的文献求助30
10秒前
12秒前
一人独钓一江秋完成签到,获得积分10
12秒前
14秒前
15秒前
干雅柏发布了新的文献求助10
17秒前
搜集达人应助俏皮芷蕊采纳,获得10
19秒前
上官若男应助sugar采纳,获得10
20秒前
xxxllllll发布了新的文献求助30
20秒前
20秒前
CodeCraft应助wangqiuhong采纳,获得10
21秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174