Multi-Level fusion graph neural network: Application to PET and CT imaging for risk stratification of head and neck cancer

头颈部癌 危险分层 计算机科学 分层(种子) 人工智能 头颈部 图形 人工神经网络 癌症 医学 内科学 理论计算机科学 外科 种子休眠 植物 发芽 休眠 生物
作者
Junyi Peng,Lihong Peng,Zidong Zhou,Xu Han,Hui Xu,Lijun Lu,Wenbing Lv
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:92: 106137-106137 被引量:1
标识
DOI:10.1016/j.bspc.2024.106137
摘要

Risk stratification of head and neck cancer (HNC) patients is important to settle individualized treatment strategies. This study proposed a multi-level fusion graph neural network (MLF-GNN) that fuses PET/CT image features and clinical data for improved prognosis prediction of HNC patients. This study exploited 642 HNC patients from 7 different centers collected from The Cancer Imaging Archive (TCIA), which were arbitrarily separated into 507 patients from 4 centers for training and internal validation, and 135 patients from 3 centers for external testing. We constructed a population graph with edges representing the similarity between patients and the vertices representing radiomics features. Single-modality GNN models and MLF-GNN models by using feature-fusion and network-fusion strategies were constructed for progression-free survival (PFS) prediction, respectively. Model performance was evaluated by the concordance index (C-index), area under the receiver operator characteristic curve (ROC-AUC), and Kaplan–Meier curves. Compared with the single-modality GNN models and feature-fusion based MLF-GNN model, the network-fusion based MLF-GNN model achieved the highest C-index of 0.788 (95 % CI: 0.727–0.848) and AUC of 0.807 (95 % CI: 0.731–0.870) for PFS prediction in the external testing set. Besides, it also showed good performance on the secondary endpoints of overall survival (OS), recurrence-free survival (RFS), and metastasis-free survival (MFS) in the external testing set, with C-index of 0.800 (95 % CI: 0.729–0.871), 0.823 (95 % CI: 0.763–0.884) and 0.758 (95 % CI: 0.673–0.844), respectively. Subgroup analysis stratified with pathogenic site and treatment type showed that the proposed method has good prediction performance on subgroup risk stratification. The proposed MLF-GNN model could capture the topological relationships among patients by taking full advantage of multi-modality imaging data and clinical data, which achieved improved prognostic performance and was beneficial to guide individual treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
姜起蛟发布了新的文献求助10
2秒前
2秒前
Dazzein发布了新的文献求助10
2秒前
cocolu应助炙热的千风采纳,获得10
2秒前
lize5493发布了新的文献求助10
2秒前
3秒前
劲秉应助fff采纳,获得30
3秒前
Ava应助小白采纳,获得10
3秒前
miugmiug完成签到,获得积分10
4秒前
小二郎应助皮念寒采纳,获得10
4秒前
FashionBoy应助木子采纳,获得10
5秒前
5秒前
5秒前
Emmmm完成签到,获得积分10
6秒前
研友_Y59785应助淼淼采纳,获得10
6秒前
6秒前
就这样完成签到,获得积分10
6秒前
9秒前
9秒前
Riley发布了新的文献求助10
9秒前
爆米花应助lize5493采纳,获得10
9秒前
zjsu_zpz发布了新的文献求助10
10秒前
隐形曼青应助姜起蛟采纳,获得10
12秒前
13秒前
思源应助典雅的俊驰采纳,获得10
13秒前
一一应助路奇k采纳,获得10
13秒前
桃青完成签到,获得积分10
14秒前
14秒前
上官若男应助黄沙漠采纳,获得10
14秒前
爆米花应助黄沙漠采纳,获得10
14秒前
wanci应助黄沙漠采纳,获得10
14秒前
14秒前
桐桐应助黄沙漠采纳,获得10
14秒前
李健的小迷弟应助黄沙漠采纳,获得10
14秒前
Owen应助黄沙漠采纳,获得10
14秒前
15秒前
在水一方应助燃之一手采纳,获得10
15秒前
15秒前
希望天下0贩的0应助nothing采纳,获得10
16秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470653
求助须知:如何正确求助?哪些是违规求助? 3063626
关于积分的说明 9084762
捐赠科研通 2754142
什么是DOI,文献DOI怎么找? 1511256
邀请新用户注册赠送积分活动 698359
科研通“疑难数据库(出版商)”最低求助积分说明 698253