Integrated bioinformatics analysis identifies a Ferroptosis-related gene signature as prognosis model and potential therapeutic target of bladder cancer

膀胱癌 小桶 基因签名 比例危险模型 肿瘤科 弗雷明翰风险评分 免疫系统 生存分析 生物 基因 列线图 癌症 癌症研究 转录组 基因表达 内科学 医学 免疫学 疾病 遗传学
作者
Zonglai Liu,Dan Du,Shizhong Zhang
出处
期刊:Toxicology Research [Oxford University Press]
卷期号:13 (1)
标识
DOI:10.1093/toxres/tfae010
摘要

Abstract Background Bladder cancer (BLCA) is one of the most prevalent cancers worldwide. Ferroptosis is a newly discovered form of non-apoptotic cell death that plays an important role in tumors. However, the prognostic value of ferroptosis-related genes (FRGs) in BLCA has not yet been well studied. Method and materials In this study, we performed consensus clustering based on FRGS and categorized BLCA patients into 2 clusters (C1 and C2). Immune cell infiltration score and immune score for each sample were computed using the CIBERSORT and ESTIMATE methods. Functional annotation of differentially expressed genes were performed by Gene Ontology (GO) and KEGG pathway enrichment analysis. Protein expression validation were confirmed in Human Protein Atlas. Gene expression validation were performed by qPCR in human bladder cancer cell lines lysis samples. Result C2 had a significant survival advantage and higher immune infiltration levels than C1. Additionally, C2 showed substantially higher expression levels of immune checkpoint markers than C1. According to the Cox and LASSO regression analyses, a novel ferroptosis-related prognostic signature was developed to predict the prognosis of BLCA effectively. High-risk and low-risk groups were divided according to risk scores. Kaplan–Meier survival analyses showed that the high-risk group had a shorter overall survival than the low-risk group throughout the cohort. Furthermore, a nomogram combining risk score and clinical features was developed. Finally, SLC39A7 was identified as a potential target in bladder cancer. Discussion In conclusion, we identified two ferroptosis-clusters with different prognoses using consensus clustering in BLCA. We also developed a ferroptosis-related prognostic signature and nomogram, which could indicate the outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
5秒前
写论文的狗完成签到,获得积分10
5秒前
wushuang完成签到 ,获得积分10
6秒前
小铃铛发布了新的文献求助10
6秒前
无极微光应助阳炎采纳,获得20
6秒前
之之完成签到,获得积分10
6秒前
多看论文多读书关注了科研通微信公众号
7秒前
8秒前
8秒前
9秒前
Kk完成签到,获得积分10
9秒前
落寞傲南完成签到,获得积分10
9秒前
wanci应助曲书文采纳,获得10
10秒前
英俊的尔容完成签到 ,获得积分10
10秒前
高级牛马完成签到 ,获得积分10
11秒前
12秒前
12秒前
FashionBoy应助Viyo采纳,获得10
12秒前
赵晨雪完成签到 ,获得积分10
12秒前
安全123完成签到,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
coco完成签到,获得积分10
14秒前
美满的鲂发布了新的文献求助10
15秒前
16秒前
小章呀发布了新的文献求助10
16秒前
Hello应助安全123采纳,获得10
16秒前
CQ发布了新的文献求助10
17秒前
Mado发布了新的文献求助10
17秒前
妍宝贝完成签到 ,获得积分10
18秒前
自觉以冬完成签到 ,获得积分10
18秒前
高大的羽毛完成签到,获得积分0
19秒前
苦酷发布了新的文献求助10
21秒前
23秒前
23秒前
情怀应助xy采纳,获得10
24秒前
知性的寻芹完成签到,获得积分10
27秒前
哭泣的宛丝完成签到,获得积分10
28秒前
dddd完成签到,获得积分10
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789740
求助须知:如何正确求助?哪些是违规求助? 5722835
关于积分的说明 15475357
捐赠科研通 4917509
什么是DOI,文献DOI怎么找? 2647048
邀请新用户注册赠送积分活动 1594699
关于科研通互助平台的介绍 1549180