侧链
材料科学
四氢呋喃
聚合物
溶剂
半导体
溶解度
双极扩散
有机半导体
薄膜
高分子化学
纳米技术
化学工程
有机化学
光电子学
复合材料
化学
工程类
等离子体
物理
量子力学
作者
Chenying Gao,Cheng Li,Yiming Yang,Ziling Jiang,Xiang Xue,Kaiyuan ChenChai,Junchao Liao,Zhichun Shangguan,Changchun Wu,Xi‐Sha Zhang,Di Jia,Fengjiao Zhang,Guoming Liu,Guanxin Zhang,Deqing Zhang
标识
DOI:10.1002/adma.202309256
摘要
Abstract Polymer semiconductors hold tremendous potential for applications in flexible devices, which is however hindered by the fact that they are usually processed by halogenated solvents rather than environmentally more friendly solvents. An effective strategy to boost the solubility of high‐performance polymer semiconductors in nonhalogenated solvents such as tetrahydrofuran (THF) by appending hydroxyl groups in the side chains is herein presented. The results show that hydroxyl groups, which can be easily incorporated into the side chains, can significantly improve the solubility of typical p‐ and n‐types as well as ambipolar polymer semiconductors in THF. Meanwhile, the thin films of these polymer semiconductors from the respective THF solutions show high charge mobilities. With THF as the processing and developing solvents these polymer semiconductors with hydroxyl groups in the side chains can be well photopatterned in the presence of the photo‐crosslinker, and the charge mobilities of the patterned thin films are mostly maintained by comparing with those of the respective pristine thin films. Notably, THF is successfully utilized as the processing and developing solvent to achieve high‐density photopatterning with ≈82 000 device arrays cm −2 for polymer semiconductors in which hydroxyl groups are appended in the side chains.
科研通智能强力驱动
Strongly Powered by AbleSci AI